BioKollekt – A novel peptide-based separation platform for electronic scrap


BioKollekt – A novel peptide-based separation platform for electronic scrap

Lederer, F.; Claus, G.; Matys, S.; Boelens, P.

Circular economy, growing electronic waste piles and resource scarcity request for efficient ways for the recycling of electronic scrap. There are numerous recycling strategies known for precious metals. However, the recycling rates for a majority of elements are still low. The main reason for the lack of feasible recycling methods are the low costs for primary resources on the market. Other reasons are the high diversity and mostly low concentrations of valuable elements in electronic devices. Until now, biological recycling tools are not applied for resource recovery even though they could help to solve numerous challenges. Biological tools provide various potential recycling techniques, such as surface binding, mineral dissolving, transformation and metal complexation [1]. Using highly selective biomolecules like peptides delivers material selectivity in a complex mixture. Peptides are biodegradable, can be produced in high amounts chemically or biologically and are more robust compared to larger biomolecules [2].
The BioKollekt group develops a novel, peptide-based separation platform for certain elements that are part of electronic scrap (Fig.1). The peptides were identified using phage surface display (PSD). Target materials for motif identification were particles of the rare earth containing lamp phosphor powders LaPO4:Ce,Tb (LAP) and CeMgAl11O19:Tb (CAT). The peptides RCQYPLCS and ETKKCTTGPCKVVT were identified as selectively binding to LAP and CAT respectively [2, 3]. In the BioKollekt approach, these peptides are used to functionalize carrier materials such as magnetic carriers. Based on these functionalized carrier materials, appropriate e-waste particle separation processes were designed [4]. The major goal of our research is the development of an eco-friendly, efficient and sustainable recycling process for metals in electrical devices. Peptides, as relatively robust biomolecules with a giant variety of possible binding motifs, are the perfect key to interact with target metals. In this biogenic approach, we combine the target metal binding characteristics of the peptides with the separation process-supporting characteristic of the carrier. As a positive side effect, the design of the biocollector addresses its own reusability. That makes the process more sustainable in respect to resources and the positive impact on the ecological footprint of the recycled product, as well as more efficient in respect to costs and effort.

Keywords: circular economy; electronic waste; phage surface display; biocollector; magnetic separation

  • Lecture (Conference)
    International conference on Metal-binding peptides, 05.-08.07.2022, Nancy, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-35886
Publ.-Id: 35886