QED.jl - Strong-field particle physics code


QED.jl - Strong-field particle physics code

Hernandez Acosta, U.; Steiniger, K.; Jungnickel, T.; Bussmann, M.

We present a novel approach for an event generator inherently using exact QED descriptions to predict the results of high-energy electron-photon scattering experiments that can be performed at modern X-ray free-electron laser facilities. Our event generator makes use of the fact, that the classical nonlinearity parameter barely approaches unity in high-frequency regimes accessible at these facilities, while this parameter range is outside of the application window of existing QED-PIC codes. This constraint on the parameter range allows for an approximation which is capable of taking the finite bandwidth of the X-ray laser into account in the description of the interaction.
We investigate the application of the new first-principle method to the generation of events in energy-driven electromagnetic cascades, which complements the studies on intensity-driven cascades at optical laser experiments.

  • Poster
    International Conference on Quantum Systems in Extreme Conditions (QSEC2022), 14.-18.11.2022, Bingen am Rhein, Germany

Permalink: https://www.hzdr.de/publications/Publ-36057
Publ.-Id: 36057