Experimental and simulation studies of the channeling phenomena for high energy implantation


Experimental and simulation studies of the channeling phenomena for high energy implantation

Guo, B. N.; Variam, N.; Jeong, U.; Mehta, S.; Posselt, M.; Lebedev, A.

As device geometries scale, there is an increasing trend for high energy CMOS well implants to migrate to small incidence angles (near zero degree), and therefore avoid the well spacing limitations caused by shadowing and encroachments of the ion beam by the photoresist mask. However, this transition results in the replacement of traditional de-channeling profiles by channeled dopant profiles. From a device engineering perspective, accurate models of channeled profiles are becoming more important. The degree of channeling is dependent on the acceptance angle, incident angle, dopant species, energy, dose and extent of damage induced in the crystal. This paper discusses both experimental and simulation results that shed light on the contribution of these factors. In addition, the control requirements on ion implantation parameters from a channeling perspective will also be discussed.

Keywords: ion implantation; semiconductor technology; channeling

  • Lecture (Conference)
    14th International Conference on Ion Implantation Technology (IIT2002), Taos, USA, September 22-27, 2002
  • Contribution to external collection
    IEEE Proceedings of the 14th Int. Conf. on Ion Implantation Technology, IIT 2002, Taos, NM, USA, Sept. 22-27,IEEE, Piscataway, USA, 2003, IEEE Publications EX505-TBR,p.131

Permalink: https://www.hzdr.de/publications/Publ-5063
Publ.-Id: 5063