Experimental and Numerical Mixing Studies inside a Reactor Pressure Vessel


Experimental and Numerical Mixing Studies inside a Reactor Pressure Vessel

Höhne, T.; Kliem, S.; Prasser, H.-M.; Rohde, U.

The work was aimed at the experimental investigation and numerical simulation of coolant mixing in the downcomer and the lower plenum of pressurized water reactors (PWR). For the investigation of the relevant mixing phenomena, the Rossendorf test facility ROCOM has been designed. ROCOM is a 1:5 scaled Plexiglas model of a German PWR allowing conductivity measurements by wire mesh sensors and velocity measurements by LDA technique. The CFD calculations were carried out with the CFD-code CFX-4. For the design of the facility, calculations were performed to analyze the scaling of the model. It was found, that the scaling of 1:5 to the prototype meets both: physical and economical demands. Flow measurements and the corresponding CFD calculations in the ROCOM downcomer under steady state conditions showed a Re number independency at nominal flow rates. The flow field is dominated by recirculation areas below the inlet nozzles. Transient flow measurements with high performance LDA-technique showed in agreement with CFX-4 results, that in the case of the start up of a pump after a laminar stage large vortices dominate the flow. In the case of stationary mixing, the maximum value of the averaged mixing scalar at the core inlet was found in the sector below the inlet nozzle, where the tracer was injected. At the start-up case of one pump due to a strong impulse driven flow at the inlet nozzle the horizontal part of the flow dominates in the downcomer. The injection is distributed into two main jets, the maximum of the tracer concentration at the core inlet appears at the opposite part of the loop where the tracer was injected. For turbulent flows the CFD-Code CFX-4 was validated and can be used in reactor safety analysis. Due to the good agreement between measured results and the corresponding CFD-calculation efficient modules for the coupling of thermal hydraulic computer codes with three-dimensional neutron-kinetic models using the results of this work can be developed. A better description of the mixing processes inside the RPV is the basis of a more realistic safety assessment.

Keywords: Mixing; Boron Dilution; CFD; RPV

  • Lecture (Conference)
    4th ASME/JSME Joint Fluids Engineering Conference, July 2003, Hawaii, USA, CD-ROM
  • Contribution to proceedings
    4th ASME/JSME Joint Fluids Engineering Conference, July 2003, Hawaii, USA, CD-ROM

Permalink: https://www.hzdr.de/publications/Publ-5400
Publ.-Id: 5400