Boron dilution Transients in PWRs


Boron dilution Transients in PWRs

Weiß, F.-P.; Kliem, S.

Boron 10 is a strong thermal neutron absorber. As boric acid solved in the coolant of PWRs, it is used to compensate the excess reactivity of the reactor especially at the beginning of the fuel cycle. Therefore, an inadvertent or even unavoidable reduction of the boron concentration means an increase of reactivity that might result in a power excursion, a so called boron dilution transient.
The reactivity increase depends on the of mixing of the underborated water with the coolant inventory in the downcomer (DC) and lower plenum (LP) where the boron concentration is still on the normal high level.
After introducing the different boron dilution scenarios, results of the latest PKL (Primärkreislauf test facility at FANP) experiments will be presented aiming at the assessment of the maximum slug volume for the different safety injection cases. Moreover, the ROCOM (Rossendorf Coolant Mixing) tests will be discussed that were performed to study mixing phenomena inside the reactor pressure vessel (RPV) and which provided typical boron concentration profiles at the core entrance for the different flow regimes. These experiments are used to develop and validate calculation models for boron mixing. Such models are needed to get information about realistic time dependent boron concentration profiles over the cross section of the core entrance. The obtained concentration profiles are used as boundary conditions for coupled neutronic / thermal-hydraulic core calculations to show whether recriticality of the shut down reactor is reached and how high the maximum power peak can be. The results of such calculations will be presented proving that these deborated slugs can cause prompt criticality. Nevertheless, due to the fast Doppler feedback no core damage occurs even with the maximum slug volume of 36m³ .

  • Book (Authorship)
    Unterrichtsmaterial für die Frederic Joliot/Otto Hahn Summer School, Karlsruhe,August 20-29, 2003

Permalink: https://www.hzdr.de/publications/Publ-6584