Superconductivity at Ultralow Temperatures and its Interplay with Nuclear Magnetism


Superconductivity at Ultralow Temperatures and its Interplay with Nuclear Magnetism

Herrmannsdörfer, T.; Pobell, F.

In this article we will describe experiments at microkelvin temperatures which were performed to give - at least partly - answers to the following questions:

a. will all nonmagnetic metals become superconducting if refrigerated to low enough temperatures,
b. what is the impact of the weakest version of magnetism, nuclear magnetism, on superconductivity.

a. The first question has intrigued low temperature physicists since the discovery of superconductivity by H. Kamerlingh-Onnes in 1911. He wrote already in 1913 “There is left little doubt that if Au and Pt could be obtained absolutely pure, they could also pass into the superconducting state at helium temperatures”. And in 1929 W. Meissner wrote “At present it does not seem unlikely that, opposite to former expectations, all metals will become superconducting at low enough temperature”. One can pose the question in more general terms: “Is the electron-phonon interaction or another possible pairing mechanism in all metals strong enough so that they will eventually become superconducting, if this transition is not hindered by other phenomena, like magnetic properties?” After all, somehow the conduction electrons have to get rid of their entropy when approaching absolute zero, and one way is a transition to a superconducting state.

Looking at the periodic system of the elements, one realizes that superconductivity is rather the rule than the exception. Most metallic elements become superconducting if they show no magnetic order like some 3d- and 4f-elements. Even most insulators, like S or O, if forced into a metallic state by high pressure, eventually enter the superconducting state. When we started our research, there were only two small “islands” in the periodic system of the elements where metals had shown neither a superconducting nor a magnetic transition: some alkali and alkaline-earth metals and the noble and platinum metals (Cu, Ag, Au, Rh, Pd, Pt).

b. Superconductivity in its simplest version - s-wave, singlet pairing of conduction electrons mediated by electron-phonon interaction - is counteracted by magnetic interactions. This has been well demonstrated by the depression of the superconducting transition temperature when magnetic impurities are introduced. The large variety of “magnetic interactions” has varying impacts on superconductivity. The clearest demonstration of its detrimental impact is the vanishing of the superconducting state when a superconducting metal enters a ferromagnetic state. This was demonstrated in 1977 by Matthias et al. for ErRh4B4 and by Ishikawa and Fischer for HoMo8S8.

The weakest known version of magnetism is caused by the interaction of nuclear magnetic moments. Hence, it was a natural question to investigate the impact of nuclear ferromagnetism on superconductivity. This investigation became possible when we had observed a nuclear ferromagnetic transition of the superconductor AuIn2 at 35 µK in 1994. The results of the investigation of the interplay between nuclear ferromagnetism and superconductivity in AuIn2 - some of it are not yet understood - will be described in Sect. 5. Further investigations of the impact of nuclear paramagnetism in AuAl2, Al, Sn, AuIn2, In, Rh, as well as TiH2+x on superconductivity are discussed in Sect. 6. In Sect. 7, a first study of the interplay of hyperfine enhanced nuclear magnetism and superconductivity is presented. Eventually, in Sect. 8, we will summarize our results.

The experiments described in this article have been performed at the Forschungszentrum (formerly: Kernforschungsanlage) Jülich and at the University of Bayreuth

  • Contribution to external collection
    in: Frontiers in Superconducting Materials, Heidelberg: Springer Verlag, 2005, 71

Permalink: https://www.hzdr.de/publications/Publ-7251
Publ.-Id: 7251