Experimental and numerical studies of void fraction distribution in rectangular bubble columns


Experimental and numerical studies of void fraction distribution in rectangular bubble columns

Krepper, E.; Reddy Vanga, B. N.; Zaruba, A.; Prasser, H.-M.; Lopez De Bertodano, M.

Bubbly flow is encountered in a wide variety of industrial applications ranging from flows in nuclear reactors to process flows in chemical reactors. The presence of a second phase, recirculating flow, instabilities of the gas plume and turbulence, complicate the hydrodynamics of bubble column reactors.
This paper describes experimental and numerical results obtained in a rectangular bubble column 0.1 m wide and 0.02 m in depth. The bubble column was operated in the dispersed bubbly flow regime with gas superficial velocities up to 0.02 m/s. Images obtained from a high speed camera were used to observe the general flow pattern and have been processed to calculate bubble velocities, bubble turbulence parameters and bubble size distributions. Gas disengagement technique was used to obtain the volume averaged gas fraction over a range of superficial gas velocities. A wire mesh sensor was applied, to measure the local volume fraction at two different height positions. Numerical calculations were performed with an Eulerian-Eulerian two-fluid model approach using the commercial code CFX.
The paper details the effect of various two-fluid model interfacial momentum transfer terms on the numerical results. The inclusion of a lift force was found to be necessary to obtain a global circulation pattern and local void distribution that was consistent with the experimental measurements. The nature of the drag force formulation was found to have significant effect on the quantitative volume averaged void fraction predictions.

Keywords: Bubble column; experiments; wire mesh sensor; high speed video camera CFD; drag bubble forces; non-drag bubble forces

Permalink: https://www.hzdr.de/publications/Publ-8496