Self-assembly of Mo6S8 Clusters on the Au(111) Surface


Self-assembly of Mo6S8 Clusters on the Au(111) Surface

Popov, I.; Kunze, T.; Gemming, S.; Seifert, G.

The preferred adsorption sites and the propensity for a self-organised growth of the molybdenum sulfide cluster Mo6S8 on the Au(111) surface are investigated by density-functional band-structure calculations with pseudopotentials and a plane wave basis set. The quasi-cubic cluster preferentially adsorbs via a face and remains structurally intact. It experiences a strong, mostly non-ionic attraction to the surface at several quasi-isoenergetic adsorption positions. A scan of the potential energy surface exhibits only small barriers between adjacent strong adsorption sites. Hence, the cluster may move in a potential well with degenerate local energy minima at room temperature. The analysis of the electronic structure reveals a negligible electron transfer and S-Au hybridised states, which indicate that the luster-surface interaction is dominated by S-Au bonds, with minor contributions from the Mo atom in the surface vicinity. All results indicate that Mo6S8 clusters on the Au(111) surface can undergo a template-mediated self-assembly to an ordered inorganic monolayer, which is still redox active and may be employed as surface-active agent in the integration of noble metal and ionic or biological components within nano-devices. Therefore, a classical potential model was developed on the basis of the DFT data, which allows to study larger cluster assemblies on the Au(111).

Keywords: adsorption; self-assembly; metal surface; chalcogenide cluster

Permalink: https://www.hzdr.de/publications/Publ-9549
Publ.-Id: 9549