


The Deuteron Spin-Dependent Structure F'unction within an 
Effective Meson-Nucleon Theory 

L.P. Kaptaria*b, K.Yu. Kazakovb*'J, A.Yu. Umnikovc and B. Kämpferald 

"Research Center Rossendorf, Institute for Nuclear und Hadron Physics, PF 5101119 01314, ~resden,  FRG 

'Lab.Theor. Phys., Joint Institute for Nuclear Research, Head Post Ofice, P.O. Box 79, Moscow, Russia 

CTheoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1, und 

TRIWMF, 4004 Wesbrook Mall, Vancouver, B. C. V6T 2A3, Canada 

dInst. Theor. Phys. (KAI e. V.), Technical University, MommsenstraPe 13, Dresiden, FRG 

Abstract 

A consistent theoreticd approach is suggested for the description of deep inelastic 
scattering of polarized leptons off polarized deuterons within the operator product 
expansion method and an effective meson-nucleon theory. Our approach describes 
fairly well recent deuteron experimental data on the spin structure function gl(x). 

1 Introduction. One of the topical problems of the present experimental and theoret- 

ical investigation of deep inelastic scattering (DIS) of leptons from hadronic targets is the 

determination of the electromagnetic and weak interaction characteristics of the neutron. 

The proton and neutron properties together will allow one to veri£y sum rules of Quantum 

Chrornodynamics and predictions of QCD-motivated models. In previous experiments some 

indications of a breakdown of the fundamental symmetries are found (e.g., the famous spin 

crisis [I], the isospin symmetry violation 12, 3]), and the validity of both the Bjorken and 

Gottfried sum rules are called into question. The new experiments, starting now at DESY [4], 

SLAC [5] and by SMC [6] are aimed to clarify this subject. 

The SM [6] and E142 [5] Collaborations have recently obtained first results on the polar- 

isation asymmetry of the Cross sections and the spin dependent structure functions (SSF). 

These data together with earlier result of the EM Collaboration [I] can now be used for 

consistency checks. The SLAC data on polarized 3He [5], after the subtraction of nuclear 

structure effects 27, 81, one can extract the neutron SSF and compute the Bjorken sum r u h  

integral. It is found that Bjorken sum rule is slightly violated (by about three standa~d de- 

viations), whereas the first moment of the neutron SSF is found to be in a good agreement 

with the Ellis-Jaffe sum rule. This result seems to be in conflict with the conclucions drawn 

from the EMC experiments [I], that is, there is no room fm the spin crisis in the SLAC 
resulits [5]. At the Same time, the SM Collaboration performs the first measurements on po- 
larized deuterons [6] .  From these data one can estimate the SSF of the "isoscala~" nuclesn. 
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I 
Combining these data with EMC proton data one finds the validity of the Bj orken sum rule. 

Note the rather large errors (- 100%) in the SMC data. It is worth stressing here that the 

SLAC and SMC measurements are performed with nuclear targets, and the interpretation of 

the data requires an accurate theoretical model describing the DIS off polarized nuclei. Only 

after a correct subtraction of the nuclear structure effects, a discussion about self consistency 

of data interpretations can be meaningful. 

In the previous Papers [9, 101 we suggest a theoretical model to analyze the DIS off 

unplolarized targets by using the operator product expansion method within an effective 

mes~on nucleon theory with one-boson-exchange interaction. Within this approach a good 

description of DIS off unpolarized nuclei is achieved in a large interval of nuclear masses and 

the Bjorken scale variable X. The purpose of the present paper is to extend the proposed 

model to the polarized processes of DIS off a deuteron target. We apply our new approach 

to the SSF of the deuteron and find good agreement with recent data. 

2 Basic Formalism. The SSF's are determined experimentally by measuring the asym- 
' 

metry in the reaction with polarized particles j+Ä --r 1' + anything. The antisymmetrical 

part of the Cross section for inelastic lepton scattering, W„, is proportional to the imaginary 

part of the corresponding arn~litude T„ for forward, virtual Compton scattering from the 

polarized target , 

Here G1,z are the spin-dependent structure functions, pp = (MA, 0) denotes the four momen- 

turn of the target, MA Stands for the mass of the target. S is the normalized spin four vector 

( S . S = -1, S . p = 0). The transferred momentum is Q2 -q2, where in the laboratory 

frarne qp = (U, O,O,  -14). 
In the Bjorken limit (-Q2 -b CO, V 4 CO, ZA E q2/2MAU - fixed) the functions G1,2 are 

predicted to depend only upon xA, yielding the scaling spin dependent structure functions, 

g 1 ( 5 ~ )  = "GI (V, Q2) and g 2 ( ~ A )  = v2G2(v, Q2)/MA. Our further consideration will be 

performed in the Bjorken limit. 

The Compton amplitude T' is given by a matrix element of the time-or dered product of 

two electromagnetic current operators with the polarized target ground state lp, H), whese 

H dlenotes the projection of target spin on the z-axis. Since in DIS kinematics the tsans- 

ferred momentum q2 is large, the main contribution to the aniplitude T„ coma frorn srnall 

space-time intervals or, consequently, from the singularities of the product of operators with 

the coinciding arguments. The most reliable method of analyaing these singularities is the 

Wilcon's operator product expansion (OPE) [ll, 12,131. Within it the product of two opes- 

ators is expanded in sets of local operators with increasing order of their twist. The lowest 



values of the twist give the leading contribution in the Wilson's series. 

In our case the OPE of the antisymmetric part of Compton amplitude in the leading 

twist order reads 

where t Stands for the fundamental fields of the theory under consideration, {pv . . .} de- 

notes the symmetrization in the Lorentz indices, Cnlt are the Wilson's coefficients (being 

c-numbers), and d$".-.'n'(0) denotes the set of twist-two operators2. The explicit form of 

these operators is to be constructed from the field operators involved into the consideration. 

For instance, for the nucleon spinor fields Nt(0) these operators are 

Note that in eq. (2), due to the factorization property of the OPE, the Wilson coefficient 

functions Cn are related to short-distance physics ("subnucleonic" physics), whereas the 

matrix elements of operators &{.l--"n} characterize the large- distance physics (or effects of 

nuclear structure). We are interested in the investigation of the role of nuclear structure in 

DIS, hence further the main attention will be paid to these operators du{"l-+~}. 
For our analysis the use of helicity amplitudes is convenient. The helicity amplitudes 

AXH,XIHl , h A ~ , ~ ~ ~ l  for a process yx + t a r g e t ~  = 7 A l  + ta rget~i ,  where X, X' and H, H' are 
the Spin components of the photon and target, respectively, along the z-axis are defined as 

follows 

Here is the polarization vector of an helicity X photon, i.e., &C$ = ~ ( 0 ~ 1 ,  &i, 0), €6 = 
(-qZ, 0, 0, ¶o)/-, the other notation is obvious. The scaling structure function gl ic 
completely determined by two helicity amplitudes 

The contribution of the operators O"{"1.--.n) (3) to the Compton helicity amplitude is of the 

form 

2Note that in eq. (2) there is no definite symmetry of the operator 8 relative to the index a. An 
originally symmetric operator 0 with indices (api . .  .P,) has been rearranged t s  exhaust the so-called 
Wandzura-Wilczek term [14]. This terrn is relatively small and contributes to the SSP gz(z) snly. . 



where -Y+ = 70 + ̂ /I and 8- = ao - aZ. In deriving eq. (5) we use that fact that in DIS 
kinematics 1 41 N qo. 

Eqs. (3)-(5) show the necessity in the analysis of the SSF within OPE method to rely on 

a consistent determination of both the Wilson coefEcient functions C,,* and the matrix ele- 

ments of the twist-two operators @"-.+n) sandwiched between nuclear ground state Gectors 

Ip.4 H). So far there does not exist a rigorous theoretical method for computing simultane- 

ously both these parts. Actually only one of them can be calculated in a self-consistent way, 

the other remains to be fixed from experiment. We are interested in studying the nuclear ef- 

fects in DIS, i.e., in the computation of the nuclear matrix elements of the operator ~"{pl-~~). 

For this one needs a field theory within that the nuclear ground state vectors and other char- 

acteristic of a nucleus, such as binding energy, interacting potential, wave function etc., are 

well described. The explicit form of the operators O"{"-'n) are then determined. Here we 
' 

apply an effective meson-nucleon theory of NN forces to the OPE method. First we choose 

the interaction Lagrangian with pseudoscalar isovector coupling, that is the n NN vertex 

with coupling strength ~ J ~ N N ,  .eint, = -igTNN N ~ ( X ) ~ ~ T ~ ~ , ( X ) N ~ ~ ( X ) ,  where cr = X, y, z 

and t ,  t' = 1,2 stand for isospin indices, 4 is the isovector pion field. This Lagrangian be- 

longs to the renormalized theories, so that the application of OPE here is justified [ll, 121. 

The spinor fields are the fundamental ones of the theory, i.e., the protons and neutrons here 

are considered as "bare" nucleons. They appear to be point-like particles, and the scatter- 

ing off them has to be connected in OPE with the Wilson's coefficients The physical 

nucleons ought to be "dressed" by the interacting mesonic clouds .arid, consequently, the 

nuclear target has to be presented as a superposition of bare nucleons with messnic cloud 

and mesonic exchanges. The most natural way of dressing the hadron target is grovided by 
the Tamm-Dancoff method, according to that the physical ground state of a nucleus may be 

represented as 

where ZA Stands for the renormalization constant, s is the spin index. The functions qo; 

are deterrnined by the Hamiltonian of the system and the condition that the wave function 

(6) describes the nuclear ground state 115). The further proceduse of comput'nng the matsix 

elements of the Compton amplitude is the following one: using the Harnilton5an of the 

system, that is the equation of motion for the fields in the Heisenberg sepresentation, one 

computes the explicit form of the operators (5); then by makin use of the expansion (6) 

the matrix elements are calculated. Obviously, tkie resdting rna ix elements csntain some 

divergent integrals, related to the self-energy 9ike cosrections ts the bare niuc8eoas, i.e. the 

"dressing" diagrams. T h  Same integsals appear when computing fnatrix elements fsr the 

free physical nucleons, Since we investigate the effects sf nmclear stsucture, tbese dive 

parts must be subtracted frorn She nudear matrix dements, so that the finite raultsdepenad 



only on characteristics of physical nucleons and nuclear structure. The Wilson's coefficients 

C„ which are target independent, are the Same in both cases and determine the DIS off the 

bare constituents and ought to be included into the matrix elements of the physical nucleons. 

3 Moments of t h e  SSF of t h e  Deuteron. As it has been mentioned above one 

of the conditiols of self-consistency of the present approach is that the Hamiltonian-of the 

system and the Tamm-Dancoff expansion (6) describe the main features of the target. It is 

known [16] that in nonrelativistic limit the effective meson-nucleon theory and Tamm-Dancoff 

method result in one-boson-exchange potential that gives a good description of the deuteron. 

The procedure of nonrelativistic reduction of classical equation of motion for the interacting 

mesonic and nucleonic fields is well established, and details (e.g., ZD, V;)  can be found in 

refs. [15]. Making use of the nonrelativistic nucleon fields and nonrelativistic Hamiltonian of 

the system we compute the explicit form of the operators d:~'''rn' and the corresponding 

matrix element s for the physical nucleon and deuteron. After some cumbersome algebra 

and the subtraction of the divergent parts, coming from the nucleon matrix elements, the 

moments of the deuteron SSF may be written as 

dpdk / - ( p ,  k) [ + 5)" - (1 - &)"I , (7 )  
(2d6  f'& 2m 2m 

where n = 0,2,. . ., M:+~ stands for the moments of the "isoscalar') physical nucleon, 

M,+l(gl) = J dz zngl(x). The definition of Af is Af = $Cf+,+, - f-l-l), arid 

whereS is the operator of the total spin of the nucleons and V,(k) denotes thte sne-boson- 

exchange potential. The first term in eq. (7) is usually referred to ac the impulse approxi- 

mation contribution, while the second one is of the pure interaction origin and reflects the 

influence of boundness of the nucleons inside the deuteron. 

Applying the inverse Mellin transform to eq. (7) we reconstruct the deuteron structure 

function gf in the convolution form 

where the distribiption functions A~I-A.(~) and Afd.(y 



Equations (7) ,  (10) and (11) are the basic results in the determination of the deuteron 

moments and the deuteron SSF within the operator product expansion approach with one- 

boson-exchange. The expression for the impulse approximation contribution practically coin- 

cides with one used earlier [7] for estimates of the first moments of the deuteron SSF. For the 

first moment it gives almost the Same result as obtained inref. [ T ] ,  i.e., M: x (1-3/2pD)MY, 

where PD is the probability of the D-wave admixture in the deuteron. The distribution func- 

tion Af1.~.(y)  is interpreted as the distribution of the constituents with spins up and down 

having a kinetic energy p2/2m2 inside the up-polarized deuteron. 

Formulae (10) and (11) become more compact if one substitutes in eq. (11) the difference 

of the two 6-functions by its first derivative 

The second term in eq. (12) is the correction to the impulse approximation due the boundness 

of the nucleons. This contribution is rather small (N  (1 - 3/2PD)(V,) /m) and essentially 

depends on the behavior of the nucleonic structure function gr(x) and its first derivative. 

Formulae (7) - (12) have been obtained for the pseudoscdar isovector coupling. The 
deuteron wave function Q D ( p )  in this case is the solution of the Schrodinger equatisn with 

the pion-nucleon interaction potential V, (k) . Obviously, this wave ' functisn and potential 

are not yet sufficient to describe the properties of the physical deuteron. For a thorough 

analysis it is necessary to take into account other mesons contributing to the one-boson- 

exchange potential, i.e., the cr, W ,  p, 7, and 6 mesons that describe well the deuteron [16]. 

Our calculations with these mesons show that the form sf eqs. (7 )  - (12) is unchanged, 

except that now the wave function \ z I ~ ( ~ )  is the solution of tbe SchsBdEsn s equation with 

the full one-boson-exchange potential V&ptl~. 
4 Results. For explicit numerical calculation of the deuteson one needs a suit- 

able parametrization of the isoscalar nucleon SSF gY(x) ,  cf. eqs. 12). 'In principle, 

now there exist experimental data on the proton [l] and the neutron [3] structure fundi 

gi(a). But they are not yet fully complete, eapecially d very sma.11 a.  In this innterval sonie 

assumptions about the behavior of the nucleon structuse function are inmitab 

the choice of the isoscalar structure functisn t~y(z) d e t e r ~ n e s  wheth 

Ellis-JaEe sum rules will be hlfilled or not. We chsse h e x  the pararnetr'4zatPon of ref. [I?] 
which describes quite well the EMC data osn proton. 

Figure 1 displays the ratio g? JgY wliPch Plilustrates the sole of deuteron structnnre in polar- 

ized DIS. The dashed cmve is the resdit of a calculatisn with ody  the irn anke apprsximatiorn 

cr>ntributioni, while thcr full m v e  demonstr;ates the boimndness effects in tfae deuteron. 



Fig. 1: The ratio of the deuteron und 

isoscalar nucleon Spin structure functions. 

F~lll line - the contribution of impulse approx- 

imation + contribution of bound nucleons to 

the deuteron SSF; dashed line - the contribu- 

tion of impulse approximation. 

Fig. 2: The weighted deuteron spin struc- 

ture function X (X). Full line - the re- 

sult of computaion within the present ap- 

proach; the experimental data are taken 

from ref. [6] 

In the interval 0.05 < X < 0.75 the ratio is almost constant and about 7% less then unity. 

This is just the effect of destructive contributions of the D-wave admixture in the polarized 

deuteron, i.e., while the deuteron is polarized along the z-direction the nucleons may have a 

spin in the opposite direction due their orbital (L = 2) motion. In contrast to the EMC-effect 

on unpolarized DIS, the eEect of boundness in the polarized case is rather small. This is an 

understandable effect since in unpolarized case the structure function F:(z) determines the 

. energy-momentum conservation law, whereas in the polarized case the SSF g f  reilects the 

distribution of polarization of the constituents inside a polarized nucleus. Figure 2 displays 

our absolute values of the deuteron structure function and the comparison with the SM6 
experimental data [6]. In spite of rather large errors of these data the comparison with OUT 

calculation shows a good agreement. The numerical estimate of the first moment of $(z) 

within our approach, J dxgF(x) N 0.03, is also in a good agreement with the experimental 

result J dxgl D(SMC)(s) = 0.023 i 0.02 f 0.015 [6]. 

From these results we iconclude that the proposed approach describes the pecdiarities of 

the deuteron spin de~endent structure function. Being obtained in a rather consistent way) 

the model may to be used as a nuclear model for subtractions the nwlear shencture eEects 

in extracting the neutron (~roton) SSF from combined data of SMC, EMC, SLAC grsups 

(cf. ref. [l8] for the methcod). 



5 Summary. In Summary, we propose an extension of our theoretical method for in- 
vestigating the role of the deuteron structure in DIS with polarized particles. We find good 
agreement with the recent SMC data. Encouraged by this, our approach will be applied to 
the extraction of the neutron SSF from the combined SMC and EMC experimental data in 
subsequent work. This would allow for a consistent check of the Bjorken and ~llis-Jaffe sum 
rule and spin crisis. 
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