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The magnetocaloric effect of gadolinium has been measured directly in pulsed magnetic fields
up to 62 T. The maximum observed adiabatic temperature change is ∆Tad = 60.5 K, the initial
temperature T0 being just above 300 K. The field dependence of ∆Tad is found to follow the usual
H2/3 law, with a small correction in H4/3. However, as H is increased, a radical change is observed
in the dependence of ∆Tad on T0, at H = const. The familiar caret-shaped peak situated at T0 = TC

becomes distinctly asymmetric, its high-temperature slope becoming more gentle and evolving into
a broad plateau. For yet higher magnetic fields, µ0H >∼ 140 T, calculations predict a complete
disappearance of the maximum near TC and an emergence of a new very broad maximum far above
TC.

I. INTRODUCTION

The study of the magnetocaloric effect (MCE) in very
high magnetic fields is primarily of fundamental inter-
est. A key quantity describing the MCE is the adiabatic
temperature change, ∆Tad = T − T0, determined under
standard conditions: the initial state is at zero magnetic
field and temperature T0; the final state is at H 6= 0 and
temperature T . The MCE is usually presented graphi-
cally as ∆Tad versus T0 for constant H. For a conven-
tional ferromagnet when the MCE is measured in low
fields (µ0H <∼ 10 T) a plot of ∆Tad as a function of T0
has a characteristic caret-like shape [1, 2], with a sharp
and nearly symmetric peak at the Curie temperature, TC.
We call a ferromagnet conventional if the phase transi-
tion at the Curie point is of second order; an archetypal
example is gadolinium which is amongst the most im-
portant magnetocaloric materials for room temperature
application.

Yet, a simple physical argument shows that for large
H, the shape of the ∆Tad-vs-T0 graphs should be quite
different from that known from low-field studies. Namely,
there should be no maximum at T0 = TC. This prediction
is known [3], but little appreciated. The demonstration is
easier for H →∞. The increment of entropy is presented
as a sum of lattice and magnetic terms,

dS =
3NkB
T

dT + dSM (1)

where N is the total number of atoms and kB the Boltz-
mann constant. The temperature is assumed to be

∗ t.gottschall@hzdr.de

slightly above TC and well-above the system’s Debye tem-
perature, TD. Consequently, the first term is derived
from the Dulong-Petit value of the lattice specific heat
3NkB. This is a realistic assumption for Gd, having
TC = 294 K and TD = 184 K [4].

We now consider an adiabatic magnetization process
whose initial state is fully demagnetized and character-
ized by SM = NMkB ln(2J+1), where NM is the number
of “magnetic” atoms in the system and J is their total an-
gular momentum (we assume localized 4f electrons and
neglect the contribution of the conduction electrons for
simplicity here). The final state is magnetized to satura-
tion, with SM = 0. For such a process Eq. (1) becomes

0 = 3NkB ln

(
T

T0

)
−NMkB ln(2J + 1). (2)

Hence, the temperature for H → ∞ is expressed as fol-
lows [3]:

T = (2J + 1)NM/3NT0. (3)

For Gd (NM = N and J = 7/2), this simplifies to

T = 2T0 (4)

and the adiabatic temperature change is given by

∆Tad = T0. (5)

Thus, for H → ∞ and T0 > TC, ∆Tad should increase
with T0 with a proportionality factor of 1 for Gd. The
slope, known to be negative above TC for smallH (µ0H <∼
10 T), should therefore change sign and become positive
at a certain critical value of H, so that the maximum of
∆Tad at T0 = TC should disappear.
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For T0 < TC, ∆Tad is always a growing function of
T0, whatever the value of H. In general, the description
is more complicated and outside the scope of this work.
However, for H →∞ and T0 very close to TC it is given
by a simple linear expression,

∆Tad = T0 + 21
13 (T0 − TC), (6)

which is an adaptation for Gd of a more general equation
(A.6), derived in the appendix. Thus, there should be an
abrupt change of slope at T0 = TC, by a factor of 2.6 for
Gd, but no maximum.

Recent years have seen a steady progress in using
pulsed magnetic fields in magnetocaloric research [5–10].
Techniques have been developed for direct MCE measure-
ments in fields as high as ∼ 60 T [5, 9, 10]. However, de-
spite the earlier predictions [3], the functional relations
valid in such strong fields and the experimentally deter-
mined quantitative knowledge of the MCE was essentially
limited to ∼ 10 T [2]. Here we present a theory-guided,
systematic study of gadolinium in pulsed fields of up to
62 T, aimed specifically at the acurate determination of
the MCE. This work is organized as follows. First, the
experimental techniques and the theory are described.
Subsequently, the results are presented, discussed, and
compared to theory followed by a concluding assessment.

II. EXPERIMENTAL DETAILS

In order to prepare a single-crystal specimen, poly-
crystalline gadolinium metal of 99.96 wt.% purity (with
respect to all stable elements in the periodic table) pre-
pared by the Materials Preparation Center of Ames Lab-
oratory was cast into a cylinder that was then strained
by mechanical impact. The cylinder was suspended in-
side a sealed tantalum container by a tantalum wire and
placed in an electric resistance furnace. It was annealed
at ≈ 1200 ◦C for 24 hours under inert atmosphere [11].
One of the large resulting grains was then oriented to
the 〈0001〉 direction by x-ray back-reflection Laue and a
3 mm cylinder was spark cut from the oriented grain. The
orientation of the face was refined using Laue technique,
and the faces ground parallel on 600 grit SiC paper.

To prepare a spherical sample, a rectangle was cut out
with a square cross section that was slightly larger than
the diameter of the sphere desired. The rectangle was cut
such that the long dimension of the rectangle was parallel
to the 〈0001〉 crystallographic direction. The rectangle
was made long enough to be chucked in a submersible
lathe and was placed in the tank of a sinker electro-
discharge machine (EDM). A brass tube of appropriate
internal diameter was used as the electrode. As the tube
spark cut the rotating crystal, a sphere was formed. The
EDM was stopped just before it cut through, first to keep
the sphere from being lost in the tank, but secondly so
that there were small nubs on the sphere indicating the
〈0001〉 direction. The nubs were filed smooth, after the

sample was electro-polished to provide a barrier against
oxidation.

The adiabatic temperature change was measured in the
Dresden High Magnetic Field Laboratory using a pulsed-
field magnet generating fields up to 62 T. Two hemi-
spherical segments were cut out from the single-cystalline
gadolinium sphere using a wire saw. Both segments were
glued together with two-component silver epoxy placing
in between a differential type-T thermocouple. A wire
thickness of 25 µm was used to ensure a sufficiently fast
response time of the thermocouple [12]. The sample was
then mounted on a plastic holder with the field point-
ing along the 〈0001〉 direction. Both thermocouple junc-
tions where located in the field center of the magnet coil.
Therefore, the field sensitivity of the thermocouple (a
few Kelvin in 62 T) can be neglected since both thermo-
couple junctions shift in the same manner and only the
temperature difference between them is considered. The
high vacuum inside the sample tube and the short dura-
tion of the pulse (time to reach the maximum field was
33 ms) assure almost perfect adiabatic conditions. Adi-
abatic magnetization curves were measured in the same
magnet on a fragment with the same shape and aspect ra-
tio as the sample stack used for the ∆Tad measurements
with its c axis along the field direction. The magneti-
zation was measured using the induction method and a
coaxial pick-up coil system. A detailed description of
the pulsed-field magnetometer can be found in Ref. [13].
Isothermal M(H) curves up to 14 T were obtained using
a commercial vibrating-sample magnetometer (Quantum
Design PPMS-14). These isothermal magnetization data
and the pulsed-field ∆Tad results were used to determine
grid points for rescaling the adiabatic M(H) results from
pulsed-field measurements to absolute values. These were
utilized to correct demagnetizing effects. Quasi-static
measurements of ∆Tad in fields up to 1.93 T were ob-
tained using a purpose-built device with two nested Hal-
bach magnets as field source. More details about the
latter setup can be found elsewhere [14, 15].

III. THEORY

In order to visualize the anticipated evolution of
∆Tad(T0), the simple approach outlined in the Introduc-
tion needs to be generalized to finite H.

We begin by augmenting Eq. (2) with an extra term,

0 = 3NkB ln

(
T

T0

)
−NMkB ln(2J + 1) + SM . (7)

The added term, SM , represents the magnetic entropy
of the final state, no longer assumed to be saturated.
Therefore, SM is now nonzero. It is given by Eq. (1.22)
of Ref. [16]:

SM = NMkB

[
ln

sinh
(
2J+1
2J x

)
sinh

(
1
2J x

) − xBJ(x)

]
, (8)
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FIG. 1. Calculated reduced adiabatic temperature change of
Gd as function of the reduced initial temperature for differ-
ent values of the dimensionless magnetic field, h, defined in
Eq. 12. The dependence for T0 < TC (dashed curves) is com-
plex to derive and is not considered in this work.

where BJ(x) is the Brillouin function and

x =
µµ0H + 3J

J+1 kBTCBJ(x)

kBT
. (9)

This expression is characteristic for the molecular-field
theory [16]. The first term in the numerator of Eq. 9 is
the energy due to the applied magnetic field, µ being the
atomic magnetic moment. The second term desribes the
molecular field; it is proportional to the reduced magne-
tization,

σ = BJ(x). (10)

For simplicity, the following calculations are limited to
the special case of Gd: NM = N , J = 7/2, µ = 7µB .
The final temperature is expressed using Eq. (9):

T = TC
h+ 7

3 BJ(x)

x
, (11)

where h is the dimensionless “magnetic field”,

h =
7µBµ0H

kBTC
. (12)

The combination of Eqs. (7) and (8) is solved for the
initial temperature,

T0 = T

[
sinh 8

7x

8 sinh 1
7x

e−xBJ (x)

]1/3
. (13)

It is convenient to eliminate T from this expression by
using Eq. (11):

T0 = TC
h+ 7

3 BJ(x)

x

[
sinh 8

7x

8 sinh 1
7x

e−xBJ (x)

]1/3
. (14)

Finally, Eq. (14) is subtracted from Eq. (11) to yield the
adiabatic temperature change:

∆Tad = TC
h+ 7

3 BJ(x)

x

×

{
1−

[
sinh 8

7x

8 sinh 1
7x

e−xBJ (x)

]1/3} (15)

The conjunction of Eqs. (14) and (15) provides a para-
metric representation of the dependence of ∆Tad on T0,
x being the parameter. This dependence is plotted in
Fig. 1 (solid lines) for several fixed values of h. ∆Tad
increases as a function of T0 for h large and T0 > TC.
This increase persists up to very high temperature, given

by Tmax ≈ 2.2 k−1
B µBµ0H � TC (not shown in Fig. 1),

where ∆Tad(T0) exhibits a broad maximum. The dashed
lines in the ferromagnetic region (T0/TC < 1) require
more involved self-consistent calculations and are not un-
der discussion herein. Just note that very close to the
Curie point the dashed curves can be regarded as ap-
proximately linear and described by explicit expressions
similar to Eq. (6).

In order to describe the field dependence of ∆Tad at
T0 = TC, TC is subtracted from Eq. (11), which results
in

∆Tad = TC

[
h+ 7

3 BJ(x)

x
− 1

]
. (16)

Then Eq. (14), with T0 = TC, is solved for h:

h = x

[
8 sinh 1

7x

sinh 8
7x

exBJ (x)

]1/3
− 7

3
BJ(x). (17)

The combination of Eqs. (16) and (17) provides a para-
metric representation of the dependence of ∆Tad on h (or
on H). For x and h small, h ≈ 47

294 x
3 and

∆Tad
TC

≈ 1

14
x2 ≈ 1

14

(
294

47

)2/3

h2/3. (18)

This is the well-known H2/3 power law derived by Oester-
reicher & Parker [17]. When h increases, it proves useful
to include the next term in the expansion,

∆Tad
TC

=
1

14

(
294

47

)2/3

h2/3 − 21, 451

13, 541, 640

(
294

47

)4/3

h4/3

= 0.242h2/3 − 0.018h4/3.

(19)

This expression is accurate to 1% for h ≤ 1 (which cor-
responds to µ0H ≤ 62 T).
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FIG. 2. Adiabatic temperature change ∆Tad of a gadolinium
single crystal in pulsed magnetic fields up to 62 T at different
initial temperatures T0. For all curves, both the magnetiza-
tion and the demagnetization branches are plotted. Experi-
mental data presented in this and other figures are measured
with the magnetic field vector along the 〈0001〉 direction. The
inset shows the temporal profile of the magnetic field pulse.
The rise time amounts to 33 ms.
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FIG. 3. (a) Adiabatic temperature change ∆Tad as a func-
tion of temperature for different magnetic fields. The data
points were extracted from the magnetic-field dependences of
∆Tad for given field values. They are connected with dashed
lines as a guide to the eye. The solid line shows the data ob-
tained from direct measurements of the adiabatic temperature
change under quasi-static conditions. (b) shows the low-field
region of (a).
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FIG. 4. Magnetization as a function of applied magnetic
field. The solid lines represent isothermal measurements up
to 14 T and the dashed curves were obtained in adiabatic
pulsed-field experiments. Due to the large temperature in-
crease during the pulse, the adiabatic curve strongly deviates
from the isothermal results. Considering the adiabatic tem-
perature changes in Fig. 2, it is possible to determine grid
points (crosses) in order to match the pulsed-field data to the
isothermally determined values of the magnetization.

IV. RESULTS AND DISCUSSION

Figure 2 presents the results of direct measurements of
the adiabatic temperature change as a function of applied
magnetic field, for several starting temperatures T0. The
maximum MCE measured was 60.5 K in a field of 62 T,
for T0 just above 300 K. Even when the starting temper-
ature is far below the Curie temperature, at T0 = 100 K,
∆Tad in 62 T is as high as 10 K, scaling almost linearly
with the field. Closer to TC, the field dependence of ∆Tad
has a noticeable negative curvature that flattens out to-
wards higher fields.

The inset of Fig. 2 shows the typical shape of a field
pulse. One can appreciate that the rise time is about
33 ms and the fall time is three times longer. For all
curves in Fig. 2 both the magnetization and demagne-
tization branches are plotted. No significant hysteresis
can be observed, which is evidence of the high quality
of our measurements and sufficiently short response time
of the thermocouple. It is also clear that no apprecia-
ble eddy-current heating took place. Indeed, eddy cur-
rents induced by the changing magnetic field would have
additionally heated up the sample, both on rising and
falling field; as a result, the temperature after the pulse
would have been higher than the starting temperature,
T0. Yet, in the present experiments, as well as in our
previous studies [9, 12], the temperature always returned
to its initial value, T0, as soon as the pulse was over.

A number of points were selected from the data array
shown in Fig. 2, these points were arranged in several se-
ries according to the value of the applied magnetic field
and plotted against starting temperature, T0, as shown
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in Fig. 3. The vertical dotted line marks the Curie tem-
perature, TC = 294 K. In low fields (< 10 T, Fig. 3b)
the ∆Tad(T0) dependence is caret-shaped and approx-
imately symmetric, the maximum being at T0 = TC;
this is in agreement with direct ∆Tad measurements in a
static field of 1.9 T (solid line in Fig. 3). In very strong
magnetic fields, the shape of the ∆Tad(T0) dependence is
clearly asymmetric – the low-temperature slope is steeper
than the high-temperature one – the maximum is broader
and situated distinctly above TC. The observed shift of
the maximum is an extrinsic effect caused by the asym-
metry of the peak and its smearing out due to imperfect
homogeneity of the sample. The true, intrinsic departure
of the maximum from TC towards much higher temper-
atures is only expected to take place in fields of more
than 140 T, which corresponds to h = 2.3 in Figure 1.
Of particular interest is the emergence of a broad tem-
perature range where the magnetocaloric effect is large
and nearly constant. Taking for example the 62 T curve,
the interval where ∆Tad ≈ 60 K extends from 300 to
350 K. The theoretical predictions summarized in Fig. 1
suggest that this interval should become yet much wider
in higher magnetic fields.

The use of high pulsed magnetic fields to study the
MCE of gadolinium was pioneered by Ponomarev [18].
The maximum field available in Ref. [18] was as high
as 35 T, yet ∆Tad was determined indirectly from mea-
sured adiabatic magnetization. As regards direct MCE
measurements, we are aware of just one previous work
where ∆Tad of Gd metal was measured in comparable
magnetic fields [19]. The maximum temperature change
was ∆Tad = 60 K, for the strongest available field of 55 T
and T0 = 295 K. Our value for 55 T and T0 = 294.9 K is
∆Tad = 54 K, that is 10 % less. The discrepancy cannot
be explained by the difference in the sample quality. In
Ref. [19] the measurements were performed on commer-
cial polycrystalline Gd containing 12 times more impu-
rities than our starting material. If anything, our ∆Tad
should have been higher. The overestimation of the MCE
in Ref. [19] is probably related to the neglect of magne-
tostriction of gadolinium. The temperature in Ref. [19]
was determined from measurements of the electrical re-
sistance of a thin layer of gold deposited on the Gd sample
and field-induced strain (magnetostriction) was ignored
when calibrating the thermometer in Ref. [19]. We em-
ploy thin thermocouples, which are insensitive to strain.

Since the experimental results of Ref. [19] are claimed
to be in agreement with the molecular-field calculations,
we decided to carry out a similar comparison of our own
results with theoretical predictions. For the comparison,
the measured ∆Tad(H) curves had to be corrected for
demagnetization. To this end, magnetization measure-
ments were performed in the same pulsed-field coil as
the one employed in the ∆Tad experiments, on a specially
cut single crystal having the same aspect ratio and ori-
entation as the aggregate sample used to measure ∆Tad.
Magnetization was also measured in isothermal condi-
tions, in quasi-static magnetic fields, on the same single
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FIG. 5. Comparison of the adiabatic temperature change at
two different starting temperatures near TC and the theo-
retical curve with and without contribution of the conduction
electrons to the heat capacity (dashed and dotted curve). The
inset shows the difference between the theoretical and the ex-
perimental curves.

crystal. The isothermal and selected adiabatic magneti-
zation curves are displayed in Fig. 4 as solid and dashed
lines, respectively. At low temperatures (T = 4 and
10 K) the curves of both kinds lie close together. The
initial slope of the low-temperature isotherms yielded
N = 2.6 × 10−3 for the demagnetizing factor. At ele-
vated temperatures the magnetocaloric effect is strong
and the two kinds of curves differ considerably. Namely,
the displayed adiabate intersects the isotherms, taken at
regular intervals of 10 K. The crossing-points marked in
the diagram were used to scale the pulsed-field magne-
tization to absolute values, the evolution of temperature
along the adiabate being known from the previous ∆Tad
measurements.

Finally, the magnetic field in selected ∆Tad(H) data
sets was corrected by using the adiabatic M(H) curves
with possibly close values of T0 and the standard expres-
sion, Hint = H −NM(H). Two of the corrected curves,
with T0 just above TC, are shown in Fig. 5. The theoreti-
cal dependence, given by Eq. 19 and shown by dotted line
in Fig. 5, overestimates ∆Tad by as much as 13 %. The
overestimation can be attributed to the neglect of the
contribution of conduction electrons to the specific heat
of Gd. The model proposed in Ref. [3] and adopted in
Section III is rather general and applies to all rare earth
compounds. The generality has its price, particularly,
when it comes to metals, since conduction electrons are
simply neglected in the model. Let us now include their
contribution to the specific heat. According to Brown,
[20] γ = 2.6× 10−3 cal mol−1 K−1, or 1.3 × 10−3 R/K.
This yields γT ≈ 0.42 R at T ≈ 320 K; the weak depen-
dence on T will henceforth be neglected. Consequently,
the total non-magnetic specific heat (lattice + conduc-
tion electrons) is 3.42 R rather than 3R. Therefore, the
equations of Section III should be modified as follows.
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(i) The prefactor 3kBN in the first term of Eq. (7)
should be replaced by 3.42 kBN .

(ii) The exponent of the square brackets in Eqs. (13-15)
should be 1/3.42 rather than 1/3.

(iii) The coefficients of the expansion (19) should be-
come

3

14× 3.42

(
3

14× 3.42
+

13

147

)−2/3

and

46, 305− 26, 596× 3.422

96, 040× 3.422 × (63 + 26× 3.42)

(
3

14× 3.42
+

13

147

)−4/3

As a result, the modified expansion (19) should read

∆Tad
TC

= 0.221h2/3 − 0.019h4/3. (20)

This expression, with TC = 294 K and h as defined
by Eq. (12), was used to produce the solid curve shown
in Fig. 5. Agreement with the experiment is quite sat-
isfactory this time (the difference between theory and
experiment is shown in the inset of Fig. 5). Given that
our model contains no adjustable parameters and that
the calculations leading to Eq. (20) were carried out
by hand, we are reasonably confident that the dashed
curve in Fig. 5 presents the true molecular-field result
and that the calculations of Ref. [19], performed numer-
ically, with no details reported, went wrong at some
stage. The disagreement cannot be accounted for by
the model, which is much the same in this work and in
Ref. [19]. Their background specific heat was somewhat
too high, 30 J mol−1 K−1 or 3.6R (as against 3.42R in our
work), which should have resulted in an underestimation
of ∆Tad. Yet, the calculated ∆Tad(H) curve of Ref. [19]
lies about 13 % too high; incidentally, it is very close to

the dotted curve in our Fig. 5 (calculated with a back-
ground of 3R). So, there must be a numerical error in the
calculations of Ref. [19]. Be it as it may, our calculations
do agree with our experimental data and disagree with
those of Ref. [19].

V. CONCLUSIONS

Direct measurements of the magnetocaloric effect in
Gd have been carried out in pulsed magnetic fields of
up to 62 T, at which point a very large adiabatic tem-
perature change of 60.5 K has been observed. The mag-
netic field dependence of ∆Tad is found to follow the
familiar molecular-field expression with a leading term
in H2/3 and a correction term in H4/3. However, re-
garded as a function of starting temperature, ∆Tad(T0)
at H = const., it shows a number of features not ob-
served previously. Thus, the sharp and symmetric (caret-
shaped) maximum at the Curie point becomes broad
and asymmetric; its high-temperature slope becomes less
steep and tends to develop into a wide plateau stretching
from TC upwards. Calculations predict that in yet higher
fields (140 T) the maximum at T0 = TC should turn into
a simple kink and that ∆Tad(T0) should grow up until a
new, very broad maximum situated far above TC.
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Appendix: DERIVATION OF Eq. (6)

Like in the Introduction, in the final state (H = ∞)
the system is magnetized to saturation and has SM = 0.
The difference is in the initial state (H = 0): now it is not
fully demagnetized, there is a small spontaneous magne-
tization σ. Just below the Curie point the square of the
spontaneous magnetization varies linearly with tempera-
ture, cf. Eq. (3.26) of Ref. [16]:

σ2 =
10

3

(J + 1)2

(J + 1)2 + J2

TC − T0
TC

. (A.1)

At the same time, Eq. (10) turns into a simple propor-
tionality relation between σ and x:

σ =
J + 1

3J
x. (A.2)

In Eqs. (A.1) and (A.2) x, σ, and (TC − T0)/TC must
be small as compared with unity. Under the same condi-
tions, Eq. (8) becomes

SM = NMk

[
ln(2J + 1)− J + 1

6J
x2
]
. (A.3)

Here the first term in brackets decribes the fully demag-
netized initial state considered in the Introduction, while

the second term is a correction for small initial magneti-
zation. Note that Eq. (1.37) in Smart’s book [16], which
corresponds to our Eq. (A.3), has a misprint: the de-
nominator of the second term there equals 3J , rather
than 6J . Now, eliminating x by means of Eqs. (A.1) and
(A.2), one has

SM = NMk

[
ln(2J + 1)− 5J(J + 1)

2J2 + 2J + 1

TC − T0
TC

]
(A.4)

The negative of this expression is to replace the second
term in Eq. (2), which is then solved for T by iterations,
making use of the smallness of (TC− T0)/TC. The result
is

T = (2J + 1)NM/3NT0

+
NM

3N

5J(J + 1)(2J + 1)NM/3N

2J2 + 2J + 1
(T0 − TC).

(A.5)

Hence,

∆Tad =
[
(2J + 1)NM/3N − 1

]
T0

+
NM

3N

5J(J + 1)(2J + 1)NM/3N

2J2 + 2J + 1
(T0 − TC).

(A.6)

This leads to Eq. (6) for Gd, with NM = N and J = 7/2.


