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Jürgen Faßbender,†,§ Olav Hellwig,†,¶ and Alina M. Deac†

†Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials

Research, Bautzner Landstr. 400, 01328 Dresden, Germany

‡Empa-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr.
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Abstract

Interfaces separating ferromagnetic (FM) layers from non-ferromagnetic layers offer

unique properties due to spin-orbit coupling and symmetry breaking, yielding effects

such as exchange bias, perpendicular magnetic anisotropy, spin-pumping, spin-transfer

torques, conversion between charge and spin currents and vice-versa. These interfacial
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phenomena play crucial roles for magnetic data storage and transfer applications, which

require forming FM nano-structures embedded in non-ferromagnetic matrices. Here,

we investigate the possiblity of creating such nano-structures by ion-irradiation. We

study the effect of lateral confinement on the ion-irradiation-induced reduction of non-

magnetic metal oxides (e.g., antiferro- or paramagnetic) to form ferromagnetic metals.

Our findings are later exploited to form 3-dimensional magnetic interfaces between Co,

CoO and Pt by spatially-selective irradiation of CoO/Pt multilayers. We demonstrate

that the mechanical displacement of the O atoms plays a crucial role during the reduc-

tion from insulating, non-ferromagnetic cobalt oxides to metallic cobalt. Metallic cobalt

yields both perpendicular magnetic anisotropy in the generated Co/Pt nano-structures,

and, at low temperatures, exchange bias at vertical interfaces between Co and CoO.

If pushed to the limit of ion-irradiation technology, this approach could, in principle,

enable the creation of densely-packed, atomic scale ferromagnetic point-contact spin-

torque oscillator (STO) networks, or conductive channels for current-confined-path

based current perpendicular-to-plane giant magnetoresistance read-heads.

Keywords

3-D interfaces, magnetic multilayers, perpendicular magnetic anisotropy, exchange bias,

ion irradiation

Introduction

Magnetic interfaces are integral parts of our daily life. The fact that spins of a FM can

be tilted1, biased2 or pinned3 by placing them in contact with a non-ferromagnetic ma-

terial has been exploited in hard disk read heads and other magnetic sensors for decades.

More recently, it has been demonstrated that interfaces between ferromagnets and heavy

metals are an efficient way to either stabilize magnetic skyrmions at room temperature4,5,

or to design energy efficient magnetic storage devices such as race track memory6. More-
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over, the efficiency of spin-transfer torque random access memory (STT-RAM) devices can

be dramatically increased by using layers with perpendicular magnetic anisoptropy (PMA),

which can be stabilized via the interface between the FM and paramagnetic (PM) layer (e.g.,

CoFeB/MgO7, Co/Pt8–12, etc.). This list expands as the need for different interface-induced

properties increases. Meanwhile, the ever growing need of smaller, denser and faster commu-

nication devices shows no sign of slowing down in the near future. In a conventional manner,

the limits of lithographic approaches are pushed to extremes in order to satisfy this demand.

An easier path towards ultimate miniaturization can be achieved by locally modifying the

material properties by ions13 or photons14. Today, ion implantation can be confined to

a beam with the dimensions of a single ion15, but this typically requires complicated and

expensive implanters which are only capable of performing small area irradiations. Recent

studies have reported that simultaneous electric and magnetic patterning of metal oxides by

ion-irradiation can be performed by irradiating Co3O4, which is PM at room temperature,

through nano-patterned irradiation masks16,17. Indeed, it was demonstrated that upon pro-

ton irradiation, Co3O4 reduces to metallic Co. Nevertheless, the underlying physics behind

the ion-irradiation-induced oxygen reduction still lacks a consistent understanding. Previous

studies claimed that either the implanted proton chemically bonds with oxygen from Co3O4

and forms hydro-oxides, or ballistically removes oxygen from the lattice sites.16,17 The ballis-

tic interactions referred to here are the collision events between the energetic protons and the

host atoms. Cobalt oxides are good candidates for ion-irradiation-induced patterning, due

to their electronic and magnetic properties. Co3O4 is PM with a semiconducting nature18,

while CoO is an electrically insulating PM above room temperature, and is an antiferromag-

net (AFM) below 293 K19. Therefore, forming conducting and ferromagnetic nanostructures

of Co can be easily accomplished by removing oxygen from the lattice by means of energetic

ions.

In this work, we explore the role of using irradiation masks with varying dimensions

and it’s effect on ion-irradiation-induced patterning. Our results suggest that the ballistic
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interactions may play a more important role as compared to the chemical reactions which may

occur during the ion-irradition-induced reduction of CoO and/or Co3O4 to Co. Furthermore,

we also demostrate the formation of multiple CoO/Co and Co/Pt interfaces in a single sample

following the spatially confined irradiation of a CoO/Pt multilayer system through a resist

mask using broad beam proton irradiation. Our findings are utilized to form 3-dimensional

interfaces exhibiting both exchange bias at their vertical Co/CoO interfaces and PMA arising

from the horizontal Co/Pt interface20,21.

Mechanism of the ion-irradiation-induced oxide reduc-

tion

6 nm thick CoO and Co3O4 films were grown on silicon substrates using reactive RF

magnetron sputtering and capped with 2 nm Pt layers. The chemical composition of the

deposited films was controlled by X-ray photoelectron spectroscopy (see the supporting in-

formation, S1). Proton (H+) irradiation was performed on extended films, as well as films

prepared with irradiation masks. Extended films were irradiated with the following ion doses:

5 × 1015 ions.cm−2, 5 × 1016 ions.cm−2, 8 × 1016 ions.cm−2 and 1 × 1017 ions.cm−2, while

keeping the ion energy fixed at 0.3 keV for all samples.

Figure 1(a) shows the saturation magnetizations (MS) of the irradiated, extended cobalt

oxide films as a function of in-plane applied magnetic field. We found that the saturation

magnetization values did not have any monotonic dependence on the ion-irradiation dose.

Instead, for both oxide phases, the highest MS was observed for a H+ dose of 5 × 1016

ions.cm−2. Upon H+ irradiation, increased magnetic moment values were observed for all

of the samples at room temperature. As compared to CoO, Co3O4 films show greater mag-

netization values upon proton irradiation. In all cases the magnetization saturates, albeit

gradually, and small coercivities are present. However, as seen in figure 1 (b), the magnetic

response of all samples after irradiation is very low when compared to the saturation mag-
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netization of bulk Co metal as the recovered magnetization is found to be about 2% of the

bulk Co metal value.

Figure 1: a) Saturation magnetizations of CoO and Co3O4 as a function of proton irra-
diation dose obtained at 300K. Values are taken from the corresponding curves given in
supporting info S.5 b) Comparison of the magnetization curves to metallic bulk Co at room
temperature (dashed line given at around 1.4 MA/m). In the legend, continuous and dashed
lines correspond to CoO and Co3O4, respectively. Inset shows a zoomed-in view. c) A
comparison of recovered magnetization post irradiation and again after three months for a
proton irradiated extended CoO film at 300K. Normalization is done over initial saturation
magnetization value.

As mentioned above, the underlying physics behind the proton-irradiation-induced oxy-

gen reduction has not been clearly explained up to now. It has been suggested that either

chemical reactions between oxygen and hydrogen or atomic collisions between the incident

ions and oxygen atoms are responsible for the observed metallic cobalt formation17. The

saturation magnetizations given in figure 1 (a) were measured within five days of irradiation.

In order to test the stability of the samples over time, the magnetization measurements were

repeated. Magnetization measurements made three months after the initial measurements

given in figure 1 (c) show a substantial drop in the recovered MS of up to 90% indicating

reoxidation. Similar reoxidation tendencies were observed in all irradiated, extended films,

however, for ease of comparison, the hysteresis loops are shown for only one sample. This

indicates that after irradiation, the displaced oxygen atoms stay within the sample in a less

stable configuration, consequently allowing them to redistribute over time. It is also worth
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remembering that all of the samples were capped with Pt layers, thus preventing reoxidation

from the atmoshpere. Accordingly, this suggests that oxygen displacement occurs mostly

ballistically, i.e., incoming energetic protons transfer their energy to the oxygen atoms lead-

ing to displacement of oxygen atoms from the lattice sites and thereby forming metallic

cobalt. Results from extended films represent bulk behavior. Yet, in order to exploit this

effect in micro/nano devices, it would be necessary to focus the proton beam on selected

areas by implementing geometrically patterned irradiation masks. To this end, we have

lithographically patterned striped irradiation masks on top of the CoO and Co3O4 samples

in order to spatially confine the irradiated regions.

Irradiation masks with stripe widths of 500 nm, 5, 10 and 20 µm with a pitch of 1, 10,

20 and 40 µm, were fabricated (figure 2 a - e) and the H+ irradiation was performed at an

ion fluence of 1 × 1017 ions.cm−2.22 Magnetization measurement results after irradiations

are shown in figure 2 f). For both oxide types, 500 nm-wide stripes yielded the greatest

magnetic response. After irradiation, larger stripes such as 10 and 20 µm, incur a much

smaller MS than that of the narrower stripes. In the CoO case, a slightly different behaviour

is observed as seen in figure 2 (f). Indeed, CoO films irradiated through 20, 10, and 5 µm

striped irradiation masks show MS below 0.01 MA/m, while the MS of the film with 500

nm stripes reaches 0.10 MA/m. Other than the fact that the MS of this particular sample

is one order of magnitude greater, there is no direct dependence on the stripe width seen

in films of larger stripes, as is also the case for Co3O4 (fig. 2 f). Regardless, it is found

that the use of a stripe mask becomes effective when the stripe width is smaller. For CoO,

the sample with 500 nm stripes shows greater saturation magnetization as compared to the

extended CoO irradiated with the same ion dose. Similarly, for the case of Co3O4, the effect

of the masks become clearer when the stripe width is 5 µm or lower. Stripe widths larger

than these resulted in saturation magnetization values comparable to or smaller than the

extended films. This could be attributed to the density of the interfaces.

Similar to the films irradiated without masks, we repeated the magnetization measure-
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Figure 2: Implementation of the irradiation masks. a) Representation of the location and the
dimensions of the masked areas on a film. b) Scanning electron and c-e) optical microscopy
images of the irradiation patterns with stripe widths of 500 nm, 5, 10 and 20 µm, respectively.
f) Saturation magnetization values at 300K for films irradiated with protons through striped
irradiation masks for CoO and Co3O4. Values are taken from the corresponding curves
given in supporting info S.5. Dashed lines show saturation magnetizations obtained from
irradiations of extended CoO (blue), Co3O4 (red) films with the same ion dose. ( g) The time
dependence of the magnetic stability after 3 months. Magnetic hysteresis curves of a CoO
film at 300K, implemented with a 20 µm wide striped irradiation mask, were recorded post
irradiation and then again 3 months later. All of the magnetization curves given here were
recorded at room temperature, under an in-plane applied magnetic field which was parallel
to the stripe direction.

ments 3 months later. Magnetization measurements performed 3 months later revealed that

the magnetization drops around 20% (fig. 2 g), which is substantially lower as compared

to the films that were exposed to extended irradiations. Dramatic reoxidation of the irradi-

ated extended films as opposed to films where the irradiations are confined to much smaller

dimensions cannot be ascribed purely to a possible chemical reduction. In a closed system,

capped with Pt, reoxidation can occur only internally (i.e., re-diffusion of displaced oxygen
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atoms to form cobalt-oxides) and cobalt hydro-oxides are found to be quite stable at room

temperature23. On the other hand, one can argue that the reoxidation can occur as a re-

sult of possible cracking upon proton irradiation. In such a case, complete reoxidation of

the all films would be expected, independent of the irradiation mask size. Therefore, the

oxygen atoms, removed from the lattice upon proton irradiation, should have a relatively

unstable state, which enables them to form cobalt oxide again. On the other side, it is worth

mentioning that the above mechanism we propose is one of the possible scenarios that can

take place during this process. An investigation focused on finding oxygen locations at the

intermediate and final stages of this process could help in explaining this mechanism further.

Printing perpendicular interfaces

Figure 3: Magnetic hysteresis curves recorded at 10 K after cooling from room temperature
under a 7 T applied magnetic field. a) Comparison of irradiated single CoO layer and
CoO/Pt multilayers. b) Magnetization curves of multilayered films for different magnetic
field directions with respect to the film plane. Normalization was done at a higher field
region, however, the image shown here is given for a smaller region due to better visibility.
Accordingly, saturation of the single layer differs from 1 in the visible region. This is due to
a large PM signal of the single layer which shifts the saturation field to higher fields.
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Here, we demonstrate how oxygen reduction by proton irradiation can be exploited in

spintronics and how vertical AFM/FM interfaces can be printed. In this study, both a 6 nm

thick single layer CoO film and a [CoO(0.8 nm)/Pt(0.8 nm)]5 multilayer film were prepared

and capped with a thin Pt cap layer (see methods). Both films were fabricated with 500

nm-wide striped irradiation masks, then irradiated with 0.3 keV protons at an ion dose

of 1 × 1017 cm−2 (the same conditions given in the previous section). After irradiation,

samples cooled down under 7 T magntic field and magnetization curves were recorded at

10 K (figure 3). The magnetic field during cooling and measurement was applied always

in the same direction, i.e., for out-of-plane magnetization measurements (figure 3 b), the

magnetic field was perpendicular to the sample plane during field cooling as well as during

the measurements. For in-plane magnetization, the magnetic field was parallel to the sample

plane and the stripe direction during cooling and the measurement. Single layer CoO,

irradiated through a 500 nm-wide striped mask did not show any exchange bias at 10 K

(figure 3 a). For a system with well defined Co/CoO interfaces, exchange bias effect under

these measurement conditions is expected. On the other hand, the multilayered film, after

the same irradiation process through a 500 nm-wide mask, showed a well-defined exchange

bias after training, observed as a shift in the field axis of the magnetization curve, as shown

in figure (3 a). This indicates that the CoO/Co interfaces in the multilayered film are more

defined allowing pinning of the ferromagnetic spins of Co by AFM CoO as compared to the

case of single layer CoO. We also found that when the magnetic field is applied out of the

film plane, the coercive field increases. However, the exchange bias field decreases slightly

from 195 mT to 137 mT at 10 K (figure 3 b). The observed difference for different field

orientations is consistent with a previous report21. This suggests that each individual stripe

behaves like an independent film with a well-defined CoO/Co interface showing exchange

bias in addition to a Co/Pt interface exhibiting out-of-plane easy axis magnetization.

Ferromagnetic behavior accompanied with a relatively large exchange bias point towards

a more efficient oxygen removal upon proton irradiation. In addition to the exchange bias

9
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Figure 4: a) Schematic representation of the evolution of magnetic spins as well as the dis-
tribution of the atoms in the proton irradiated CoO/Pt (left) and CoO film (right). b) MFM
phase images of irradiated [CoO/Pt]5 multilayered and single layered CoO c) films. Bright
contrast for b), also highlighted with cyan markers, represent where the mask was placed
and the dark contrast is obtained from the irradiated regions. d) Out-of-plane magnetization
curves for unirradiated as well as irradiated [CoO/Pt]5 multilayered films. Irradiations were
done through 500 nm-wide striped masks. e) In- (blue) and out-of-plane (black) measure-
ments of the irradiated multilayer sample. Measurements were performed at 300 K. f) Time
dependence of the magnetic stability of the irradiated multilayers after 7 months.10
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occuring at the Co/CoO interface, for a well-defined Co/Pt interface, perpendicular easy-

axis magnetization is expected. Indeed, a perpendicular magnetic easy-axis was observed

for the irradiated multilayered film at room temperature. The coercive field drops at 300K,

yet stays within the typical range for Co/Pt layers (figure 4 e), around a few tens of mT24.

Nevertheless, the shape of the magnetization switch for the irradiated sample is broader

(fig. 4 d and e), i.e., canted for a material with a full perpendicular easy axis25 (for com-

parison to a metallic reference sample, please see the supporting infomration, S4). This

canted switching is attributed to the partially damaged Co/Pt interfaces after irradiation

(fig. 4 a) and similar behavior was also confirmed by Hall measurements (see the supporting

information, S.6). Such damaged interfaces can accomodate Co atoms with in-plane easy-

axis magnetization. However, the existence of exchange bias and perpendicular magnetic

anisotropy confirms both Co/Pt and CoO/Co interfaces in three dimensions are intact and

magnetically effective. Formation of the ferromagnetic volumes inside irradiated [CoO/Pt]5

multilayered films with 500 nm striped irradiation masks was further confirmed by magnetic

force microscopy (MFM) images. Figure 4 b) and 4 c) display room temperature remanence

MFM images for [CoO/Pt]5 multilayered and CoO single layered films irradiated through

500 nm striped irradiaton masks, respectively. For the multilayered film, the MFM image

shows a ferromagnetic contrast according to the dimensions of the irradiation mask. On the

other hand, for the irradiated single layered CoO film, we were not able record any magnetic

contrast with MFM, which is most likely due to a very weak magnetic signal leading to a

weak stray field and is in line with the magnetization data. In addition, X-ray diffraction

(XRD) measurements also indicate the formation of metallic Co after irradiation, seen as a

shift of the superstructure peak towards higher diffraction angles (see supplementary mate-

rial, S2). It is also worth noting that during imaging no crack formation was observed for

both samples.
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Discussion

The effect of lateral confinement on the ion-irradiation-induced oxygen reduction is ex-

plored. It is found that, for our case, by increasing the number of interfaces either by

introducing irradiation masks or by preparing multilayered films, the efficiency of the oxide

reduction can be enhanced. Moreover, these interfaces increase the durability of the formed

ferromagnetic regions. In comparison to a previous study with Co3O4/Pd multilayers,17 the

amount of reduced metallic Co is lower in our case using CoO/Pt multilayers. This can

be attributed to two different reasons; (i) Co3O4/Pd is a different system with a different

potential to accomodate the excess oxygen compared to a CoO/Pt system, (ii) irradiation

mask dimensions. In our case, proton irradiations were done through larger masks compared

to that study.17 This is of particular importance, because we show that we can increase

the efficiency of the oxygen reduction by decreasing the mask‘s stripe width. However, it is

also worth mentioning that due to lower oxygen reduction efficiency, our results might be

describing an intermediate state of proton irradiation-induced oxygen reduction for this par-

ticular system. Apart from the oxygen, hydrogen that is implanted inside the material may

also be forming some secondary phases as PM cobalt-hydro-oxides.17 Yet, these secondary

phases must have either a small concentration or are in an amorphous state with smaller

grains, such that they are effectively invisible by means of X-rays (see supporting informa-

tion, S.2). Nevertheless, our results suggest that the mechanism of the irradiation-induced

oxygen reduction cannot be purely chemical. Instead, ballistic removal of the oxygen atoms,

which requires less energy as compared to the removal of Co or Pt, plays an important role

(the threshold proton acceleration energies required to displace Co and O from their lattice

position are considered to be 550 and 175 eV, respectively) .26 It has been shown that, in-

dependent of the oxidation mechanism, in the first few monolayers of CoO, oxygen-cobalt

bonding is much weaker than in the bulk.27 Therefore, in our experiments, we expect to

have weak bonding between Co and O in the as-grown state, so that oxygen removal would

require lower energies. In addition, at temperatures below 373 K, the oxygen diffusion length
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in Co is around 1 nm.28 Additionally, for Co/Pt multilayers, the lattice mismatch between

Cofcc and Ptfcc (≈ 10% )29 induces defect formation at the interfaces. These defects were

characterized as vacancies.30 Due to shorter distances than the diffusion length, Co/Pt in-

terfaces could provide a suitable location for displaced oxygen atoms. This estimation is

also in line with a study where it was shown that similar interfaces between Pt and TiO2

could accomodate the free oxygen owing to their higher defect/vacancy concentrations in

comparison to the bulk of the layers31. So, as a result of its increased vacancy concentration,

a Co/Pt interface could be an appropriate location for the removed excess oxygen atoms.

Because of the directionality of the proton beam, i.e., the direction of the energy that is

transferred to the oxygen atoms, it is expected that more oxygen accumulation occurs in the

direction of the ion beam, from the top towards the subtrates direction. This suggests that

for each Co layer, the bottom Co/Pt interface may behave like a sink and can be deformed,

whereas, the top interface, Pt/Co, can stay intact, giving rise to the observed perpendicular

magnetic anisotropy (figure 4 a). In contrast, the bottom Co/Pt interface cannot be the

only location where dislocated oxygen atoms are trapped. Because, in such a situation the

reduction efficiency would not exceed 50% (see the supporting information table S.1 and

figure S.3). Nevertheless, our results both from single and multilayers show that the density

of interfaces either created through irradiation masks or placed during sample preparation

plays a crucial role when forming FM structures.

Conclusions and Outlook

We describe the formation of 3-dimensional interfaces at the nanoscale and address the

role of lateral confinement of the irradiated areas. Our results open a new way to form

3-dimensional magnetic and/or conductive heterostructures. Especially, considering how

low irradiation energies result in shorter lateral straggle (3nm, see the supporting material

S.3) by utilizing this method it is in principal possible to achieve structures with dimensions
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closer to the ion beam size. On the other hand, reoxidation of the ion-irradiation-reduced Co

layers still presents a problem that could limit device lifetime and performance. We believe

that further optimization of this method can pave a way for denser networks of spintronic

devices in which biasing and perpendicular magnetic anisotropy can be introduced in different

dimensions. This method can also be utilized in AFM spintronics where FM/AFM and

heavy metal/AFM interfaces are required.32 Based on our results, further optimization of

this process can be done by implementing more interfaces or an appropriate getter/sink

layer for oxygen to be absorbed or changing the irradiation ion species could yield sharper

interfaces and help improve this method for use in other metal/oxide thin film systems for

different applications as well.

Methods

CoO and Co3O4 layers were grown using reactive RF magnetron sputtering. Pt layers

were grown under an Ar atmosphere, while oxide layers were grown under an Ar and O2

atmosphere, with varied O2 to Ar ratios (for further details, please see the supporting inor-

mation). Oxide phases were verified using X-ray photoemission spectroscopy. All films were

capped with Pt layers on top to protect from oxidation. Films consisting of single CoO or

Co3O4 layers were capped with 2 nm Pt, while multilayers were capped with 2.7 nm Pt.

Proton (H+) irradiation was performed at 0.3 keV under different doses using active water

cooling on the sample holder in order minimize the thermal effects sourced by the irradiation.

(see the related section above). All magnetization measurements were done using a Quantum

Design magnetic properties measurements system (MPMS-3) equipped with a vibrating sam-

ple magnetometer (VSM) head and superconducting quantum intereference device (SQUID)

coils. Magnetizaiton measurements were performed using diamagnetic, low-magnetic signal

sample holders. Also, some of the SQUID measurements were cross-controlled by measuring

with other SQUID-MPMS setups such as MPMS-XL. 500 nm striped irradiation masks were
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spin coated with 0.3 µm thick ZEP520A positive EBL resist and exposed using electron

beam lithography (either Raith150 TWO or Raith eLine). 5 µm, 10 µm and 20 µm striped

masks were spin coated with 1.3 µm Shipley S1813 positive photoresist and exposed in a

“Direct Laser Writer”. Resist thicknesses was chosen after series of SRIM simulations in

order to make sure that protons would not be able penetrate throught the masks. MFM

measurements were performed using a Bruker Multimode setup. Scans were carried out in

tapping mode with an interleave lift height of 40 nm.

Associated Content

Supporting Information

Additional figures;

S1: XPS characterization of as-grown films,

S2: XRD data obtained from as-grown and irradiated CoO/Pt multilayers,

S3: SRIM simulations showing lateral and depth distribution of protons in CoO/Pt

multilayer,

S4: Comparison of as-grown and irradiated CoO/Pt sample with a metallic Co/Pt refer-

ence sample,

S5: Magnetic field dependent magnetization measurements of single layer cobalt oxide

films at room temperature,

S6: Hall measurements for as-grown and irradiated CoO/Pt samples and the metallic

Co/Pt reference sample.

Additional table:

Table 1: Summary of saturation magnetization and exchange-bias fields for different

samples
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