Stability criterion for the magnetic separation of rare-earth ions

Lei, Z.; Fritzsche, B.; Eckert, K.;

Originally published:
January 2020

Physical Review E 101(2020)1

DOI: https://doi.org/10.1103/PhysRevE.101.013109

Not published yet

Perma-Link to Publication Repository of HZDR:
https://www.hzdr.de/publications/Publ-30582
Stability criterion for the magnetic separation of rare-earth ions

Zhe Lei, Barbara Fritzsche, and Kerstin Eckert

Abstract: The stability criterion for the magnetic separation of rare-earth ions is studied, taking dysprosium Dy(III) ions as an example. Emphasis is placed on quantifying the factors that limit the desired high enrichment. During magnetic separation, a layer enriched in Dy(III) ions is generated via the surface evaporation of an aqueous solution which is levitated by the Kelvin force. Later, mass transport triggers instability in the enriched layer. The onset time and position of the instability is studied using an interferometer. The onset time signals that an advective process which significantly accelerates the stratification of enrichment is taking place, although the initial phase is quasi-diffusion-like. The onset position of the flow agrees well with that predicted with a generalized Rayleigh number (Ra′ = 0) criterion which includes the Kelvin force term acting antiparallel to gravity. Further three-dimensional analysis of the potential energy, combining magnetic and gravitational terms, shows an energy barrier that has to be overcome to initiate instability. The position of the energy barrier coincides well with the onset position of the instability.

DOI: 10.1103/PhysRevE.101.013109

I. INTRODUCTION

One important aspect of magnetism is its ability to levitate objects such as a water droplet or graphene [1]. Even heavier objects such as frogs can be levitated if the stray field is provided by a superconducting magnet (16 T) [2]. The body force responsible for these remarkable effects originates from the nonhomogeneous magnetization of diamagnetic substances in a spatial magnetic field gradient and is written as

\[\vec{f}_m = \frac{\chi}{\mu_0} \cdot \vec{\nabla} \vec{B}, \]

provided that the demagnetization field and Lorentz force in the medium are negligible. In Eq. (1), \(\vec{f}_m \) refers to the Kelvin force density, \(\chi \) is the magnetic susceptibility of the material, \(\mu_0 \) is the magnetic permeability of free space, and \(\vec{B} \) is the magnetic flux density. This so-called magnetic field gradient force, or Kelvin force, is the product of a magnetic-field-dependent term and the magnetic susceptibility of the material. Equation (1), which is used very often in the literature dealing with paramagnetic liquids and/or particles, e.g., Refs. [3,4], is equivalent to the classical Rosensweig formulation [5] as shown in the Supplemental Material [6].

The Kelvin force has long been used to separate particles based on their different magnetic properties. Conventional forms of magnetic separation, such as the dry drum separator [7], rely on a permanent magnet with a remanence in the order of 1 T. This technology is generally limited to separating particles with high magnetic susceptibility, such as iron and magnetite. Inserting a ferromagnetic material in the form of a porous matrix into a magnetic field, as done in the high-gradient magnetic separator (HGMS) [8,9], significantly increases the Kelvin force. This is the consequence of a local concentration of the magnetic flux density in the immediate vicinity of the matrix elements. Cycling a carrier liquid with suspended particles through this magnetized region enables micron-sized ferromagnetic particles or paramagnetic particles of a sufficiently larger size to be separated from nonmagnetic ones.

Essentially, as a carrier fluid, water gives rise to a more pronounced buoyancy than air acting antiparallel to gravity. This allows a more feasible manipulation of magnetic particles when the Kelvin force is more significant than the countering hydrodynamic forces. The dynamics of magnetic particles driven by the Kelvin force are discussed in the context of magnetophoresis [4,10–13]. Further extension down to the microfluidics scale [14] demonstrates the Kelvin force’s applicability in biological contexts. Moreover, a quantitative understanding of magnetophoresis can be used to measure the density [15] of diamagnetic particles in a paramagnetic solution or to measure the susceptibility [16] of paramagnetic solutions in an immiscible organic carrier liquid phase.

Since the late 2000s, a surprising effect of the Kelvin force has been reported, consisting of the formation of a localized enrichment of paramagnetic ions in the magnetic field gradient [17–23]. This phenomenon has inspired the technique of magnetically separating rare-earth (RE) ions, since it extends early works [24] to include even smaller elements, e.g., ions. Indeed, many nonrecyclable chemicals applied in conventional solvent extraction [25,26] could be partially replaced by a magnetic separation step.

Conceptually, the selective magnetic separation of different RE ions from a solution seems feasible based on the difference in magnetic susceptibility by three orders of magnitude [27]. Nevertheless, further development was hindered by an insufficient understanding of the working mechanisms. In
particular, it was unclear how the small magnetic energy \(E_m = \mu_0 M H V \), where \(M \) is the magnetization, \(H \) is the magnetic field and \(V \) is the characteristic volume, provided by the stray field of a permanent magnet, could compete with the much higher kinetic energy of Brownian motion which scales like \(kT \) (where \(k \) is the Boltzmann constant \(T \) is the temperature). Since the concentration field \(c(z) \) obeys the Boltzmann distribution, which can be expressed in simplified manner as \(c(z) \propto c_0 \exp(-E_m/kT) \), no change is expected from the initially spatially homogeneous distribution \(c_0 \) due to \(E_m \ll kT \).

A recent work [21] has clarified that an external source, e.g., evaporation, is required to assist the process of enrichment. The evaporation of water at the interface, while solute remains conserved, forces a local increase, \(\Delta c \), in the concentration of the RE ion, see Fig. 1(a). This enriched fluid layer is of greater density. A system with a denser fluid above a lighter one is hydrodynamically unstable and is prone to Rayleigh-Taylor (RT) instability, leading to convective mixing. However, the Kelvin force, acting antiparallel to gravity, magnetically levitates the enriched layer similarly to the manner in which a paramagnetic liquid is levitated with a magnetized iron wire [3,28] in water.

However, a design guide for a prototype device making use of this principle requires a quantitative understanding of the limit of magnetic separation. This naturally led to the question of whether a stability criterion can be formulated predicting this limit. To analyze the stability of the system, the Rayleigh number concept was borrowed [21] from the context predicting this limit. To analyze the stability of the system, the question of whether a stability criterion can be formulated using this principle requires a quantitative understanding of magnetized iron wire [3,28] in water.

In order to approximately capture the critical stability condition and to estimate the maximum concentration stratification achievable, a simplified stability criterion, based on a generalized Rayleigh number \(R_{ac} \), was introduced in Ref. [21]. By including the antiparallel component of the counteracting Kelvin force \(f_m \), \(R_{ac} = R_{am} + R_{ac} \) considers the total forcing:

\[
R_{ac} = \frac{l^3}{D\mu} \frac{\partial f_\parallel}{\partial \tilde{c}} \cdot \hat{e}_z,
\]

where \(D, \mu, \rho, \alpha, \) and \(\tilde{c} \) refer to the mass diffusivity, dynamic viscosity, density, densification factor, and the unit vector parallel to gravity, respectively. \(R_{ac} \) can be understood as the ratio between the characteristic time scale of the dissipative effects, mass diffusion, and viscosity and that of the buoyant forcing. Typically, if the resulting Rayleigh number exceeds the critical one, \(\Omega(R_{ac}) \sim 10^3 \), then the base state, characterized by entirely diffusive but no convective transport, becomes unstable according to linear stability theory, and convection sets in. Note that we have adopted the sign in Eq. (2) since \(\partial f_\parallel / \partial \tilde{c} \) is negative in the present evaporation-driven case, and thus \(R_{ac} \) > 0 as expected. When the Kelvin force is added, the situation becomes more complex than the classical Rayleigh-type instabilities: First, a destabilizing gravitational force competes with a counteracting Kelvin force \(f_m \) which stabilizes the system. Second, in contrast to \(f_\parallel \), the Kelvin force is three dimensional (3D). The Kelvin force \(f_m \) could also be expressed via a magnetic Rayleigh number if only the \(z \) component antiparallel to gravity is considered, i.e.,

\[
R_{am} = \frac{l^3}{D\mu} \frac{\partial f_m \cdot \hat{e}_z}{\partial \tilde{c}}.
\]

Third, the 3D base state is time dependent and governed not only by mass diffusion but also by convection, as will be demonstrated later. Thus, any stability analysis is extremely challenging since even established concepts for diffusive base states such as the frozen-time approach, see, e.g., Ref. [30], cannot be applied. Currently, it is impossible to quantify the desired critical Rayleigh number as a function of \(R_{am} \) as can be done for thermomagnetic convection, see, e.g., Ref. [31]. Only the trend can be anticipated, namely an increase in \(R_{ac} \) as \(R_{am} \) increases.

On inspecting Eq. (4), one notes that this stability criterion is equivalent to seeking the local extrema of the resulting total force, see Fig. 1(c). Since both \(f_\parallel \) and \(f_m \) are functions of the local enrichment \(\Delta c(z) \), the partial derivative of the forces, \(\partial f_\parallel / \partial \tilde{c} \), and \(f_m = \frac{1}{2\mu_0} \nabla |B|^2 = \frac{\rho_0 + \rho Ef_\parallel}{2\mu_0} \nabla |B|^2 \), with respect to \(z \) leads to a critical concentration gradient at \(R_{ac}^* = 0 \):

\[
\frac{\partial \Delta c}{\partial z} \bigg|_{R_{ac} = 0} = \frac{\rho_0 \partial f_\parallel}{\rho_0 \rho g \alpha + \chi \partial f_\parallel},
\]
where \(\chi_0 \) is the magnetic susceptibility of the fluid at its initial concentration and

\[
\vec{f}_0 = f_0 \cdot \vec{e}_z = \frac{1}{2 \mu_0} \frac{\partial B^2}{\partial z} \cdot \vec{e}_z. \tag{6}
\]

Note that \(f_0 < 0 \) due to the decay of \(B \) with increasing \(z \) in a magnetic dipole field as used in the work. It is apparent that a singularity, i.e., a pole, exists when the denominator vanishes. The position, \(z^K \), of this singularity depends both on the material data, density \(\rho_0 \), densification factor \(\alpha \), and magnetic susceptibility of the paramagnetic solution (here \(\text{DyCl}_3 \), \(\chi_{\text{Dy}} \)) and on \(f_0 \) and its derivative. The concrete value of \(z^K \), see Eq. (5), is implicitly given by

\[
\left| f_0' \right| = \frac{\rho_0 \alpha g}{\chi_{\text{Dy}}}. \tag{7}
\]

Since both the right-hand side of Eq. (7) and \(f_0 \) of the magnet are known, \(z^K \) can be determined, cf. Fig. 2. \(z^K \) separates the space taken by the paramagnetic solution inside the cuvette into two regions: The Kelvin force-dominated region, bounded by \(z \leq z^K \), is defined by the condition \(|f_0| \geq |f_0' (z^K)| \). Given a local enrichment \(\Delta c \), the resulting Kelvin force change in this region is greater than the increase in the specific weight, see Fig. 1(b). The enriched fluid particle experiences a force antiparallel to gravity which is able to quantify the different regions, shown in Fig. 1, which fulfill the condition \(\text{Ra}^* = 0 \) in the presence of a dominating Kelvin force.

By contrast, the zone in which the change in the Kelvin force is smaller than that of specific weight refers to the gravity-dominated region. This is characterized by \(|f_0| \leq \frac{\rho_0 g \alpha}{\chi_{\text{Dy}}} \) or by \(z \geq z^K \). The concentration gradient needed to satisfy \(\text{Ra}^* = 0 \) turns its sign to \(\frac{\partial c}{\partial z} < 0 \), see Fig. 1(c). Hence, the more concentrated fluid particle settles parallel to gravity when the critical condition is reached. This corresponds to \(\frac{\partial (f_0 + f_m) \cdot \vec{e}_z}{\partial z} \leq 0 \), i.e., \(\text{Ra}^* \geq 0 \), in the lower region of Fig. 1(c).

To further understand the stability criterion, experimental evidence needs to be provided of the Kelvin force-dominated region. Moreover, the correlation of the Kelvin force-dominated region with a desired high level of enrichment needs to be investigated. To this end, an enhanced evaporation rate compared to that in the Ref. [21] is imposed to force the instability of the enrichment layer. The position and onset time of this instability are studied for different Kelvin force strengths using an interferometer. The experimental results are compared with both the \(\text{Ra}^* = 0 \) criterion and an analysis of the potential energy of the system. We show that the spatial zone where the experimentally observed instability occurs correlates very well both with the predicted location of an energy barrier and with the \(\text{Ra}^* = 0 \) criterion.

II. EXPERIMENTAL SYSTEM AND STABILITY ESTIMATION

The experiments use a quartz cell with inner dimensions of \(10 \times 10 \times 10 \text{ mm}^3 \). The cell is filled with a 0.5 M DyCl\(_3\) solution, the pH value of which is adjusted to 1 using HCl to prevent the formation of intermediates, such as dysprosium hydroxide [21]. A permanent magnet measuring \(10 \times 10 \times 10 \text{ mm}^3 \) (Webcraft GmbH, remanence \(B_r = 1280 \text{ mT} \), magnetization N42) provides a static inhomogeneous magnetic field. The \(z \) axis of the magnet’s coordinate system, termed \(z_{\text{mag}} \), starts at the lower edge of the magnet. It is parallel to the direction both of the magnetization and the gravity, see Fig. 2(a). The \(z \) component of the Kelvin force \(f_0 = \frac{f_0 \cdot \vec{e}_z}{\chi} = \frac{\rho_0 \alpha g}{z_{\text{mag}} \chi} \), see Eq. (6), can be quantified using the knowledge about the spatial distribution of the magnetic induction \(B \) of the magnet and its material data. Figure 2(b) presents the axial component of \(f_0 \). A negative value of \(f_0 \) implies that the \(z \) component of the Kelvin force density is directed upward antiparallel to gravity, in agreement with the introduction in Sec. I, Fig. 1. It reaches its maximum level at the magnet’s surface and decays rapidly with increasing distance from the magnet.

Analyzing the forces with the criterion \(\text{Ra}^* = 0 \), we are able to quantify the different regions, shown in Fig. 1, which exist as a result of the competing Kelvin force and specific weight. The border between both regions is set by \(z^K \), defined in Eq. (7). The green region marked in Fig. 2(b), the Kelvin force-dominated region, is characterized by a more significant change in the Kelvin force \(f_m \) in comparison to that of the specific weight \(f_g \) due to a local concentration change. The specific weight \(f_g = \rho g \cdot \vec{e}_z \) represents the force exerted by gravity on a unit volume of a fluid. The Kelvin force-dominated region is bounded from above at \(z_{\text{mag}} \approx 0.1 \text{ mm} \) by the condition \(|f_m| = |f_g| \). At even shorter distances to the magnet, corresponding to the thin region colored in yellow, the surface of the paramagnetic DyCl\(_3\) solution jumps toward the magnet. Bounding from below occurs at \(z_{\text{mag}} = z^K \approx 5.5 \text{ mm} \) by a region marked in red. In this region, enrichment leads to an increase in the specific weight as a result of the enrichment no longer being compensated for by the weaker Kelvin force. Hence, a \(\Delta c > 0 \), which is equivalent to an unstable stratification, leads to a downward flow in the
solution. Therefore, the red-marked region is referred to as the gravity-dominated region.

The transport processes in the DyCl₃ enrichment zone, which is exposed to evaporation, are probed for varying Kelvin forces. These are adjusted by changing the distance between the magnet and the position of the interface of the solution, referred to as \(z_{\text{int}} \) in the coordinate system of the magnet, see Fig. 2(a). To enhance the evaporation rate at the open interface in comparison to Ref. [21], an air flow is imposed parallel to the solution surface with a Reynolds number of around 300 at a time interval \(t \in [10,120] \) s. Due to the controlled ambient temperature and humidity, the evaporation rate is kept constant for all experiments.

A Mach-Zehnder interferometer (MZI) is used to measure the time- and space-resolved refractive index field of the solution [21,32,33]; this is a function of both the temperature \(T \) and the concentration \(c \). Evaporation of water molecules at the surface requires the latent heat to be provided. As a result, the local temperature below the interface decreases, at the surface requires the latent heat to be provided. As a result, the local temperature below the interface decreases, marked in Fig. 2(a) as \(Q_T \). This thermal effect introduces an unwanted \(\Delta T \), correlating with the refractive index. To decouple and quantify the two variables separately from the interferometer measurements, we use the method developed in Ref. [21]. After the ventilation stops at \(t = 120 \) s, the measured refractive index field remains nearly unchanged, see Fig. 4(b). This indicates that the dominant source term of the refractive index field has a low diffusivity, corresponding to mass transfer, see Table I. This implies that the thermal effect has dissipated in the same time interval and becomes negligible. Hence, the temperature of the solution is considered to be constant. Therefore, the safe conversion of the measured refractive index change to the concentration field is guaranteed, as proved in Ref. [21]. Admittedly, a transient temperature effect might play a role at the beginning. The resulting effect on the relevant parameters, \(\alpha \) and \(\chi \), is summed up in Table I. The Curie-Weiss law defines the magnetic susceptibility of Dy via \(\chi = \frac{C}{T-T_C} \), where the \(C \) is Curie constant with a value in the order of 1 K [34]. Therefore, \(\chi_T = \frac{\partial \chi}{\partial T} \big|_{T=298.15} \approx -2.3 \times 10^{-5} \) K\(^{-1}\). To account for the same order of magnitude of influence on \(\chi \), the temperature change in K has to be four orders of magnitude greater than the concentration change in mM. Hence, temperature dependence on the magnetic susceptibility can be neglected. The position of the pole produces a lower boundary value \(f_{o1}|T = 1.09 \times 10^{5} \) N/m\(^3\) for the thermal Kelvin force-dominated region when the thermal expansion coefficients \(\alpha_T \) and \(\chi_T \) replace \(\alpha \) and \(\chi_{\text{Dy}} \) in Eq. (7). Hence, a density increase caused by a minor residual cooling effect is overcompensated by the increase in the \(\chi_T \)-based Kelvin force, see Eq. (1). Therefore, the thermal expansion coefficient becomes nonsignificant and the \(T \) effect is decoupled from the concentration field measurement with the interferometer.

III. RESULTS

The experiments start when the position of the magnet relative to the solution interface is fixed. Ten seconds later, ventilation is switched on to enhance evaporation until \(t = 120 \) s. In the next period, within \(t \in [120,240] \) s, ventilation is switched off; finally, the magnet is removed at 240 s. The 2D concentration distribution, measured with the MZI, is plotted in Fig. 3(a) at 240 s for the case \(z_{\text{int}} = 2.5 \) mm. Similarly

- **TABLE I. Variables as a function of temperature and concentration. Nonsignificant terms are marked with *.**

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Variable (X)</th>
<th>(\frac{\partial n}{\partial T})</th>
<th>(\frac{\partial \alpha}{\partial T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive index (n) ((\Delta n = \frac{\partial n}{\partial T} \Delta X))</td>
<td>(\frac{\partial n}{\partial T}) = (\frac{1}{10000}) K(^{-1})</td>
<td>(\frac{\partial \alpha}{\partial T}) = (\frac{1}{20000}) M(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Diffusivity (\kappa)</td>
<td>(\alpha_T = 1.38 \times 10^{-7}) m(^2)/s</td>
<td>(\alpha = 2.43 \times 10^{-1}) M(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Density/volume expansion (\alpha_X) ((\Delta \rho = \rho_0 \alpha_X \Delta X))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic susceptibility (\chi_X) ((\Delta \chi = \chi_X \Delta X))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelvin force-dominated lower boundary ((f_{o1}</td>
<td>X))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3. (a) Concentration distribution in the cell at \(t = 240 \) s. The distance from the interface to the magnet on top is \(z_{\text{int}} = 2.5 \) mm, cf. Fig. 2(a). (b) Average enrichment in the region \(z \in [0,2] \) mm versus time for different magnet-to-interface distances \(z_{\text{int}} \).
to previous works, an oval enrichment zone of Dy(III) ions is generated in the upper region closer to the interfaces. The average enrichment, Δc, in this zone, $z \in [0, 2]$ mm, is plotted versus time in Fig. 3(b). This shows that enrichment proceeds rapidly between $t \in [10, 120]$ s and remains nearly unchanged between $t \in [120, 240]$ s. A 4×-higher enrichment is found in comparison to that in Ref. [21]. This enrichment in the immediate vicinity of the interface amounts to $\Delta c \approx 30$ mM [see Fig. 3(a)], corresponding to $\approx 6\%$ of the bulk concentration, or to 9 mM after averaging over $z \in [0, 2]$ mm. If the distance between the magnet and the interface of the solution is increased in steps from $z_{\text{int}} = 2.5$ mm toward $z_{\text{int}} = 5$ mm, then the average enrichment Δc decreases from 9 mM to approximately 3 mM. This drop is notable because the evaporation rate is the same in these experiments. How-
the measured values and the predicted lower boundary z^K of the Kelvin force-dominated region.

In Fig. 6(b) we translate this information into a nondimensional manner, i.e., critical Rayleigh number R_{ac} vs magnetic Rayleigh number R_{am}. To compute both Rayleigh numbers via Eqs. (2) and (3), an average concentration gradient, $\frac{c_{int} - c_{int0}}{2}$, at the center of the cell ($y = 5$ mm) is used together with the characteristic length as the concentration stratification length, i.e., $l_c = z^K$ and material data as given in Table I. We clearly see a strong stabilization effect brought on by the Kelvin force. In Fig. 6(b), this leads to an increase in R_{ac} the smaller the magnet-to-interface distance z_{int} is. At the smallest distance, $z_{int} = 2.5$ mm, adjustable in the experiment, a critical Rayleigh number $O(R_{ac}) \sim 10^6$ is found, which is about three orders of magnitude higher than without the magnetic field.

To underline the applicability of the R^* in describing the onset of instability and levitation of the enriched layer, we calculate the three Rayleigh numbers R_{ac}, R_{am}, and R^* locally in Fig. 7. For that purpose, we use the concentration stratification in the center of the solution at $t = 240$ s, which corresponds to Fig. 3. In the Kelvin force-dominated region, the resulting R^*, which is the sum of R_{ac} and R_{am}, is negative as expected. At the crossover from the Kelvin force-dominated to the gravity-dominated regions, the resulting local R^* changes its sign, which occurs at the position $z^K = (2.5 \ldots 2.6)$ mm (see inset of Fig. 7) where the instability sets in. This is in excellent agreement with the energy analysis in Sec. IV, Fig. 9(b). Thus, despite the limitations we discussed earlier, the R^* criterion demonstrates its validity as a 1D estimation of the limit for magnetic separation.

Next, we come back to Fig. 6(a). Assuming that diffusion is the sole transport process, the concentration isolines of the enrichment layer should propagate according to $\sqrt{2K_c \cdot t}$. The position reached by this hypothetical diffusion front is marked by a dashed line in the right-hand margin of Fig. 6(a) for two selected times (490 and 2000 s). At 2000 s the diffusion front has propagated over a distance of 2 mm. At the same position (2 mm), the onset of instability has been detected if $z_{int} = 4$ mm (open dot). However, the onset of instability already occurs at 27 ± 5 s, i.e., after well below 2000 s. Obviously, a faster, convective transport process has to be present, which exhibits two prominent features. The first one is the oval shape of the isoconcentration contour, which reaches its maximum extension in the cell along the central symmetry axis of the magnet. The second one is the lack of mixing between the magnetically levitated enriched layer and the bulk.

The latter aspect is illustrated in Fig. 8(a), which displays the differences in the enrichment accumulated at the bottom after the instability has set in, depending on the magnetic Rayleigh number R^*, which is the sum of R_{ac} and R_{am}.

FIG. 7. The behavior of the local Rayleigh numbers R_{ac}, R_{am}, and R^* as a function of the z coordinate, corresponding to $t = 240$ s in Fig. 3(a). The Rayleigh numbers based on $l_c = z^K$ as the characteristic length and on the vertical concentration gradient in the cell center at $y = 5$ mm. The dashed line is the boundary between the Kelvin force-dominated and the gravity-dominated regions given by z^K, belonging to $z_{int} = 2.5$ mm of Fig. 3(a).
and is therefore no longer visible in the right-hand image of Fig. 8(a).

Figure 8(b) shows the evolution of the mean enrichment, obtained after averaging the concentration in the bottom region \(z \in [9,10] \) mm over the cuvette width, as a function of time for varying \(z_{\text{int}} \). Before the onset of instability (Fig. 5), a rapid increase in the average concentration occurs as a result of the advective transport of the enrichment out of the Kelvin force-dominated region downward into the gravity-dominated region. The figure shows a greater amount of enrichment in the gravity-dominated region for greater \(z_{\text{int}} \) due to its impaired ability to levitate the enriched fluid in the Kelvin force-dominated zone.

IV. ENERGY ANALYSIS

To recapitulate, the stability of the present magnetic separation system is governed by the competition between the Kelvin force \(\vec{f}_m \) and the specific weight \(\vec{f}_g \). To obtain an approximate prediction for the stability, the \(\text{Ra}^* = 0 \) criterion was applied. With the help of this criterion, the extension of the Kelvin force-dominated region was determined, enabling the instability onset position to be predicted for different magnitudes of the Kelvin force in Fig. 6. The difference between the observed and predicted values was always less than 0.5 mm. Hence, the \(\text{Ra}^* = 0 \) criterion appears as a reasonable first estimation of the instability behavior of the present magnetic separation problem.

Nevertheless, the system under study is not one dimensional, as assumed for \(\text{Ra}^* \), but three-dimensional. Therefore, we next describe the stability based on a molar potential energy density field \(e_{\text{pot}} \).

A homogeneous \(\text{DyCl}_3 \) solution of concentration \(c_0 \) is considered as an equilibrium base state corresponding to the initial condition of the experiment without evaporation. The magnetic and gravity forces acting on the fluid are balanced by the cuvette walls in the base state. Neglecting any temperature effect, a perturbation of the base state is introduced by the concentration enrichment \(\Delta c \) in the fluid. The total force acting on the fluid changes by a \(\Delta \vec{f} \) given by \(\Delta \vec{f} = \Delta \vec{f}_m + \Delta \vec{f}_g = (\frac{x_{\text{Dy}}}{2\mu_0} \nabla \vec{B}^2 + \rho_0 g \alpha) \Delta c \). The solenoidal multiplier in front of \(\Delta c \) can be rewritten as a molar potential energy density field, \(e_{\text{pot}} \), according to \(\Delta \vec{f} = -\nabla e_{\text{pot}} \Delta c \), where

\[
e_{\text{pot}} = -\left(\frac{x_{\text{Dy}}}{2\mu_0} \nabla \vec{B}^2 + \rho_0 g \alpha z\right) + \text{const}. \tag{8}
\]

The molar potential energy density field, \(e_{\text{pot}} \), is plotted in Fig. 9(a) for \(z_{\text{int}} = 2.5 \) mm, where the constant in Eq. (8) was adapted such that the reference value is zero at the center of the interface. It is spatially inhomogeneous but steady over time. The important aspect in Fig. 9 is the existence of an energy barrier, i.e., a maximum in \(e_{\text{pot}} \) which splits
off the region at the interface of the solution from that at the lower part of the cell. For $z_{\text{int}} = 2.5$ mm this energy barrier $\Delta \varepsilon$ is visible at $z = 2.55$ mm in the coordinate system of the cell. Obviously, this value is close to the observation in the experiment [Fig. 6(a)] and in excellent agreement with the Ra* = 0 criterion in Fig. 7. This energy barrier is fixed in the z_{mag} coordinate system. Thus, when z_{int} is increased with respect to the plotted value, $z_{\text{int}} = 2.5$ mm, the energy barrier moves closer to the solution interface, i.e., it moves antiparallel to z direction, see Fig. 9(b). As a result, the size of the region in which the enrichment can be collected shrinks, and the height of the energy barrier $\Delta \varepsilon$ is reduced. This implies that the enrichment zone is liable to be more unstable, and that the downflow will thus occur at smaller z values in the enrichment zone. Moreover, the minimum value of the energy barrier is at the center line of the cuvette. Hence, the downward flow prefers to pass through the energy barrier in the middle of the gravity-perpendicular plane.

V. SUMMARY

To sum up, a quantitative understanding of the stability criterion of magnetic separation has been achieved. For this purpose, the evolution of the DyCl$_3$ enrichment has been analysed for different magnetic fields, which were adjusted by the relative distance between the DyCl$_3$ solution and the edge of the magnet. With the high evaporation rate imposed, a maximum local Dy(III) ions enrichment of $\Delta \varepsilon \approx 30$ mM, i.e., $\approx 6\%$ was achieved with the current configuration. The evolution of the enrichment averaged within $z \in [0, 2]$ mm is experimentally resolved and compared with an energy analysis. The key results lie in the discovery of a hydrodynamic instability of the enrichment zone, in understanding the mechanism of this instability based on analyzing the potential energy field, and in formulating a simplified Ra* = 0 criterion to predict the onset of instability.

The onset of the hydrodynamic instability of the enrichment zone, expressed in a downward flow, has a spatial position consistent to that predicted from both the analysis of the potential energy density field and the Ra* = 0 criterion. The onset of instability occurs significantly before the diffusive concentration front would reach the position of the starting downward flow. This indicates the existence of convection in the Kelvin force-dominated region. However, no active mixing is found between the upper regions of the enrichment with the dilute bulk. Hence, a better understanding of the complex advective transport processes in the different zones of the cell is a precondition for the efficient application of magnetic RE separation. Additional investigations into the dynamics of enrichment could further benefit from this knowledge about the stability criterion. Furthermore, coupling convection with a moving magnetic field allows the enrichment to be manipulated more flexibly in the context of a continuous magnetic separator.

ACKNOWLEDGMENTS

We thank the financial support by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economics and Technology (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1741 (Project SESIMAG-II). We thank Dr. G. Mutschke, Dr. K. Schwarzenberger and Dr. X. Yang for the helpful discussion.