Nonlinear Electronic Density Response in Warm Dense Matter

Dornheim, T.; Vorberger, J.; Bonitz, M.;

Originally published:
August 2020

Physical Review Letters 125(2020)8, 085001

DOI: https://doi.org/10.1103/PhysRevLett.125.085001

Perma-Link to Publication Repository of HZDR:
https://www.hzdr.de/publications/Publ-31377

Published on the basis of the publishers policy.
Nonlinear Electronic Density Response in Warm Dense Matter

Tobias Dornheim 1,* Jan Vorberger 2 and Michael Bonitz 3

1 Center for Advanced Systems Understanding (CASUS), D-028262 Görlitz, Germany
2 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
3 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany

(Received 9 April 2020; accepted 20 July 2020; published 19 August 2020)

Warm dense matter (WDM)—an extreme state with high temperatures and densities that occurs, e.g., in astrophysical objects—constitutes one of the most active fields in plasma physics and materials science. These conditions can be realized in the lab by shock compression or laser excitation, and the most accurate experimental diagnostics is achieved with lasers and free electron lasers which is theoretically modeled using linear response theory. Here, we present first ab initio path integral Monte Carlo results for the nonlinear density response of correlated electrons in WDM and show that for many situations of experimental relevance nonlinear effects cannot be neglected.

DOI: 10.1103/PhysRevLett.125.085001

Warm dense matter (WDM) is an exotic state with extreme densities \(r_s = \bar{r}/a_B \sim 1 \) with \(\bar{r} \) and \(a_B \) being the average inter-electron distance and first Bohr radius) and high temperatures \(\theta = k_B T/E_F \sim 1 \) with \(T \) and \(E_F \) being the temperature and Fermi energy) that occurs, e.g., in astrophysical objects [1–4] on timescales of \(10^6 \) years, in laser-excited solids [5,6] over femto- to picoseconds, and on the pathway towards inertial confinement fusion [7] over nano- to microseconds. Consequently, WDM has emerged as one of the most active frontiers in plasma physics and material science [8–10], and WDM conditions are routinely realized in experiments in large research facilities around the globe (e.g., NIF, SLAC, and the European XFEL); see Refs. [11–13] for review articles.

On the other hand, the theoretical description of WDM constitutes a formidable challenge [14,15] due to the complicated interplay of (i) Coulomb coupling, (ii) thermal excitations, and (iii) electronic quantum degeneracy effects. Moreover, the bulk of WDM theory assumes a weak response of the electrons to an external perturbation, i.e., they rely on linear response theory (LRT). This assumption enters, for example, in the interpretation of XRTS experiments [9,16], the characterization of the stopping power in WDM [17], the construction of effective potentials [18–20], density functional theory (DFT) calculations [21,22], and the computation of energy relaxation rates [6,23,24]. Consequently, numerous works have been devoted to the description of the density response of electrons both in the ground state [25–34] and at finite temperature [35–43]. These efforts have culminated in the recent machine-learning representation [44] of the static electronic density response that is based on \(\textit{ab initio} \) path integral Monte Carlo (PIMC) simulations [45–47] and covers the entire WDM regime. Moreover, even the dynamic density response can be computed from PIMC simulations [48,49], and the reported negative dispersion relation of a uniform electron gas (UEG) constitutes an active topic of investigation.

On the other hand, very little is known about the density response of correlated electrons beyond the linear regime. In particular, it is unclear up to which perturbation strength LRT remains accurate. This question becomes increasingly urgent, as free electron lasers become more powerful and peak intensities of up to \(I \sim 10^{22} \text{ W/cm}^2 \) [50] have been reported. Furthermore, intense VUV lasers are used to probe WDM [51]. A particular promising tool is THz lasers [52] as they allow for probing the low-frequency end of the density response, short pulse characterization, and streaking [53–55]. Yet, THz field applications might require in many cases a theoretical description beyond LRT, as we indicate below.

In this work, we go beyond linear response theory by carrying out extensive PIMC simulations of a harmonically perturbed electron gas [41,42] [cf. Eq. (1) below] at WDM conditions. This allows us to measure the actual density response of the electrons without any \(\textit{a priori} \) assumptions and, thus, to unambiguously characterize the validity range of LRT. In addition, going beyond the linear regime allows us to gauge the systematic errors of LRT as a function of perturbation strength, and to report the first results for the cubic response function \(\chi_3(q) \) over the entire relevant wave number range for different densities and temperatures including all exchange-correlation effects. Therefore, our results provide the basis for a generalized theory of the electronic density response beyond LRT, extending earlier work for classical plasmas [56,57] and moderately coupled quantum plasmas [58,59].
Our investigation of the nonlinear density response of electrons in WDM should be relevant for many other fields, and spark similar investigations in other domains as we note that LRT is one of the most successful concepts in physics [60,61]. It is of paramount importance in many fields, such as for describing phonons in solid state physics [62,63], excitations in systems of ultracold atoms [64,65], and screening or quasiparticle excitations in plasmas [66,67]. Moreover, it has allowed for profound physical insights into, e.g., superfluidity [65,68], collective excitation [62,63], excitations in systems of ultracold atoms [64,65], and spark similar investigations in other domains as we note that LRT is one of the most successful concepts in physics [60,61].

Results.—We simulate a harmonically perturbed electron gas of system size N governed by the Hamiltonian (we assume Hartree atomic units throughout this work)

$$\hat{H} = \hat{H}_{\text{UEG}} + 2A \sum_{k=1}^{N} \cos(\hat{r}_k \cdot \mathbf{q}),$$

with \hat{H}_{UEG} being the unperturbed UEG Hamiltonian [47,61,71], \mathbf{r}_k the electronic coordinates, and the wave vector $\mathbf{q} = 2\pi/3L(n_i, n_i, n_i)^T$ (with $n_i \in \mathbb{Z}$, and L being the length of the cubic simulation box). The perturbation amplitude A can, e.g., be the amplitude of an external electric field in the plasma or the modulation of the potential depth in an optical lattice [72]. Of particular relevance for WDM experiments is the realization of the modulation in Eq. (1) by a laser pulse; see Ref. [73] for details. We use a canonical adaptation of the worm algorithm by Boninsegni et al. [81,82] without any assumptions on the nodal structure of the thermal density matrix. Therefore, our simulations are computationally involved due to the fermion sign problem [83,84], but are exact within the given statistical uncertainty.

To measure the density response, we compute the induced density

$$\rho(\mathbf{q}, A) := \langle \hat{\rho}_\mathbf{q} \rangle_A = \frac{1}{V} \left(\sum_{k=1}^{N} e^{-i\mathbf{q} \cdot \mathbf{r}_k} \right)_A,$$

where $\langle \ldots \rangle_A$ indicates the expectation value computed from Eq. (1). The PIMC results for Eq. (2) are shown in Fig. 1(a) as the green crosses for the electron gas with a metallic density ($r_s = 2$) at the Fermi temperature, $\theta = 1$, for a wave number of $q \approx 0.84q_F$. First and foremost, we note that an increase in the perturbation strength leads to increasing deviations from a spatially homogeneous density profile, which, in turn, is measured by Eq. (2). For small A, LRT is accurate and it holds $\rho(\mathbf{q}, A) = \chi(\mathbf{q}) A$, and the density response function $\chi(\mathbf{q})$ does not depend on A. Further, the linear response function can be computed from a simulation of the unperturbed UEG via the relation

$$\chi(\mathbf{q}) = -n \int_{0}^{\theta} d\tau F(\mathbf{q}, \tau),$$

with $F(q, \tau)$ being the intermediate scattering function [9] evaluated at an imaginary time argument $\tau \in [0, \beta]$, see Ref. [44] for details. The LRT result for ρ as obtained from Eq. (3) is depicted by the solid red line and is in excellent agreement to the PIMC data for $A \lesssim 0.15$. This can be seen particularly well in Fig. 1(b), where the black squares correspond to the relative deviation between the PIMC data and LRT.

Yet, the system cannot react arbitrarily strongly with increasing A (this would lead to a negative density at the maxima of the external perturbation), and the response has to eventually saturate. Therefore, LRT systematically overestimates ρ, and the deviation to LRT appears to be parabolic in the depicted A range. Indeed, it is well known [31,32] that the first term beyond $\chi(q)$ is cubic in A and can be obtained by fitting the PIMC data to

$$\rho(\mathbf{q}, A) = \chi_1(q) A + \chi_3(q) A^3 + \cdots,$$

where $\chi_1(q)$ and $\chi_3(q)$ are the free parameters [85]. The results for Eq. (4) are included in Fig. 1(a) as the dashed blue curve, and exhibit a significantly improved agreement with the PIMC data as compared to LRT. The vertical gray dashed line corresponds to the maximum A value that has been included in the fit.
Let us next investigate the dependence of the response function on the wave number q. This is shown in Fig. 2(a) where the top and bottom half correspond to the cubic and linear response, respectively. The red symbols correspond to the usual LRT function computed from Eq. (3) for $N = 14$ (diamonds) and $N = 20$ (stars), and the dashed red line to $\chi(q)$ computed in the thermodynamic limit ($N \to \infty$) from the neural-net representation given in Ref. [44]. We note that they are in good agreement, as finite-size effects are small in this regime [44]. The black and blue symbols have been obtained from our new PIMC simulations of the perturbed system as

$$\chi(q, A) = \frac{\rho(q, A)}{A}$$

such that this pseudo response function converges to LRT in the limit of small perturbations, $\lim_{A \to 0} \chi(q, A) = \chi(q)$. For $A = 0.2$ (black symbols), Eq. (5) is in good agreement to the LRT data both for small and large q, but systematically deviates around $q \sim q_F$. For $A = 0.5$ (blue symbols), the pseudo response function systematically underestimates the density response over the entire depicted q range, and the discrepancy is again most pronounced for intermediate wave numbers, with a maximum deviation of $\sim 20\%$. To more systematically investigate this trend, we have performed extensive A scans such as depicted in Fig. 1 for different q values over the entire relevant wave number range [73]. This has allowed us to obtain the first results for the cubic response function $\chi_3(q)$, which are shown in the top half of Fig. 2(a) as the green data points. As a side note, we mention that a single $\chi_3(q)$ point requires $10\sim15$ independent PIMC simulations of Eq. (1) with different A values for each wave number, which results in a total computation cost of $O(10^7)$ CPU hours.

Overall, $\chi_3(q)$ qualitatively somewhat mirrors $\chi(q)$, although with some pronounced differences. First and foremost, we find that no finite-size effects can be resolved within the given error bars, and the only difference between $N = 14$ and $N = 20$ is the different q grid [87,88]. Moreover, $\chi_3(q)$ always has the opposite sign of $\chi(q)$, as the system cannot react arbitrarily strong to the perturbation, and the response eventually saturates. While both the linear and the cubic response function vanish in the large- and small-q limits, this happens significantly sooner for the latter function. Heuristically, this can be understood as follows: for large q values, only single-particle effects contribute to the response, the system as a whole remains hardly affected, and LRT is sufficient; further, the response is suppressed by the perfect screening [89] in the small-q limit. Similarly, we have found that both LRT and the cubic theory remain valid for larger A in both of these cases; see also Ref. [73]. Lastly, we find that the maximum in $\chi_3(q)$ appears to be slightly shifted to larger q values compared to $\chi(q)$, see also panel (b) for the same trend at $r_s = 6$.

Let us now investigate the dependence of the cubic response on the density parameter r_s. To this end, we repeat our previous study for $r_s = 6$, and the results are shown in Fig. 2(b) for $\theta = 1$. While such low densities are not typical for WDM applications, they can be realized experimentally in hydrogen jets [51] and evaporation experiments, e.g., at the Sandia Z-machine [90–93]. On the other hand, these conditions are highly interesting from a theoretical...
point of view, as electronic exchange-correlation effects are even more important due to the increased coupling strength [47,94,95].

First and foremost, we find that the nonlinear behavior of the density response appears for significantly smaller perturbation amplitudes as compared to \(r_s = 2 \), which is due to the different energy scales in the system [96]. For example, for \(A = 0.1 \) the actual response (blue symbols) is suppressed by around 30%, whereas hardly any effect would be noticed at the higher density in this case. Overall, both \(\chi(q) \) and \(\chi_3(q) \) exhibit a similar structure as for \(r_s = 2 \), but are somewhat more symmetric around the maximum at \(q \approx 2q_F \). Moreover, \(\chi_3(q) \) nearly vanishes for the smallest depicted \(q \) value (the leftmost green cross, corresponding to \(N = 34 \)) and we find a value more than 2 orders of magnitude smaller than for \(q = 2q_F \). Again, no system-size dependence of \(\chi_3(q) \) can be resolved within the given confidence interval even for \(N = 34 \) electrons (crosses).

Another interesting question is how nonlinear effects are influenced by the temperature. To this end, we return to \(r_s = 2 \) for \(\theta = 1 \) (red), \(\theta = 2 \) (green), and \(\theta = 4 \) (blue) in Fig. 2(c). With increasing temperature, the linear response function monotonically decreases in magnitude as it is expected, see the bottom half. The same also holds for the cubic response function, where this trend is drastically more pronounced compared to \(\chi(q) \). While the maximum in \(\chi(q) \) is reduced by a factor of 3 upon going from \(\theta = 1 \) to \(\theta = 4 \), the cubic response is reduced by a factor of 20.

This behavior is further illustrated in Fig. 3, where we show the \(A \) dependence of the induced density for the three temperatures at \(q \approx 1.69q_F \), i.e., around the maximum of the density response. The different symbols correspond to our PIMC data, and the dotted lines to the prediction from LRT, i.e., Eq. (3). There are two dominant trends: (i) the actual density response is smaller for large \(\theta \) and (ii) LRT remains accurate for larger \(A \).

Let us conclude this investigation by briefly touching upon the impact of our findings on state-of-the-art WDM experiments. A typical free electron laser with a frequency corresponding to a photon energy of 8 keV and an intensity of \(I \approx 10^{17} - 10^{19} \) W/cm\(^2\) corresponds to an approximate perturbation amplitude on the order of \(A \approx 10^{-5} - 10^{-3} \) (see the Supplemental Material [73] for details), which falls safely into the LRT regime even for low densities. On the other hand, intensities of up to \(I = 10^{22} \) W/cm\(^2\) have been reported recently by employing the novel seeding technique [50], which results in \(A \approx 2 \) and clearly violates the boundaries of LRT for both for \(r_s = 2 \) and \(r_s = 6 \). Even current VUV lasers like Flash are capable of reaching the nonlinear regime [51,73]. Another application of our findings concerns the experimental probing of the low-frequency response of WDM using THz lasers [52]. For example, the recently reported setup with an intensity of 600 kV/cm at around 1 THz leads to a perturbation amplitude of \(A = 0.29 \) Ha, such that a thorough theoretical interpretation of a corresponding scattering signal would most likely require us to take into account nonlinear effects.

Summary.—We have carried out extensive \textit{ab initio} PIMC simulations of the harmonically perturbed electron gas. This has allowed us to (i) unambiguously characterize the validity range of LRT and (ii) to obtain the first results for the cubic response function \(\chi_3(q) \) of the warm dense electron gas, including all exchange-correlation effects. First, we have found that including \(\chi_3(q) \) significantly improves the accuracy of the density response function for larger perturbation amplitudes. Moreover, nonlinear effects are particularly important for intermediate wave numbers \(q \sim q_F \), whereas \(\chi_3(q) \) vanishes both in the small- and large-\(q \) regimes. Regarding physical parameters, we have found that nonlinear effects become more important at lower densities due to the intrinsic energy scale of the system. This makes materials of relatively low density a highly interesting laboratory to study the interplay of nonlinearity with electronic exchange-correlation effects, and a challenging benchmark for theory.

In addition, we have found that nonlinear effects are severely affected by the electronic temperature and vanish upon increasing \(\theta \). While our current simulations are limited to temperatures down to the Fermi temperature \((\theta = 1) \), this is a strong indication that nonlinear effects might be even more important for lower temperatures \(\theta = 0.1 \ldots 0.5 \), where many WDM experiments are located.

Our findings are particularly relevant for state-of-the-art WDM experiments with intense free electron lasers in the x-ray or VUV regime, and for low-frequency probing in the THz regime, where the diagnostics methods rely on theory input for the response functions [50–52]. Finally, our results will also be important for nonlinear optical diagnostics such as Raman or four-wave mixing spectroscopy, e.g., Refs. [97–99], or THz streaking [100] that could provide additional information on correlation effects in warm dense matter.
All PIMC data are available online [73] and can be used to benchmark approximate theories like DFT. Moreover, our new data are exact within the given confidence interval and thus provide the basis for a more general theory of the electronic density response beyond LRT thus further completing our understanding of the electron gas as a fundamental model system [47,101].

We acknowledge stimulating discussions with Richard Pausch and Dominik Kraus, and helpful comments by Michael Bussmann. This work was partly funded by the Center of Advanced Systems Understanding (CASUS) which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament, and by the Deutsche Forschungsgemeinschaft (DFG) via project BO1366/13. The PIMC calculations were carried out at the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen (HLRN) under Grant No. shp00015, on a Bull Cluster at the Center for Information Services and High Performance Computing (ZIH) at Technische Universität Dresden, on the clusters hypnos and hemera at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and at the computing center (Rechenzentrum) of Kiel university.

† t.dornheim@hzdr.de

O. Certik, J. D. Kress, and M. S. Murillo, Molecular dynamics studies of electron-ion temperature equilibration in hydrogen plasmas within the coupled-mode regime, Phys. Rev. E 95, 043202 (2017).

[34] M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Analytical expressions for the local-field factor g(q) and the exchange-correlation kernel K_{xc}(r) of the homogeneous electron gas, Phys. Rev. B 57, 14569 (1998).

[96] In fact, the kinetic and interaction energy of the unperturbed system scales (in first order) as $K \sim r^{-2}$ and $V \sim r^{-1}$, respectively. Yet, defining a rescaled perturbation amplitude [e.g., $\delta = A/(K + V)$] does not significantly simplify.

