Lesson 31: Changing the Accelerator

Moving from CPU to GPU

alpaka allows for easy ...
• ... exchange of the accelerator
• ... porting of programs across accelerators
• ... experimentation with different devices
• ... mixing of accelerator types
Lesson 31: Changing the Accelerator

Architectural differences

- **Rule of thumb:** Offload computationally intensive parts to GPUs
- **GPUs** are designed for high throughput
 - Many lightweight threads
 - High memory latency
- **CPUs** are designed for low latency
 - Few heavyweight threads
 - Low memory latency

Session 31: Changing the Accelerator

Switching the Accelerator

- **alpaka** provides a number of pre-defined Accelerators in the `acc` namespace.

 - For GPUs:
 - `AccGpuCudaRt` for NVIDIA GPUs
 - `AccGpuHipRt` for AMD and NVIDIA GPUs

 - For CPUs
 - `AccCpuFibers` based on Boost.fiber
 - `AccCpuOmp2Blocks` based on OpenMP 2.x
 - `AccCpuOmp4` based on OpenMP 4.x
 - `AccCpuTbbBlocks` based on TBB
 - `AccCpuThreads` based on `std::thread`

```cpp
// Example: CPU accelerator
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;

// Example: CUDA GPU accelerator
using Acc = acc::AccGpuCudaRt<Dim, Idx>;

// Example: HIP GPU accelerator
using Acc = acc::AccGpuHipRt<Dim, Idx>;
```
Lesson 31: Changing the Accelerator

Changing the work division

- GPUs have many more cores than CPUs → More parallel threads possible
- GPUs have several multiprocessors
- Each multiprocessor can execute multiple threads
- Threads are grouped into blocks
- Blocks are scheduled to run on multiprocessors

// CPU work division (example)
Idx blocksPerGrid = 8;
Idx threadsPerBlock = 1;
Idx elementsPerThread = 1;

// GPU work division (example)
Idx blocksPerGrid = 64;
Idx threadsPerBlock = 512;
Idx elementsPerThread = 1;
Lesson 31: Changing the Accelerator

GPU performance hints

- Avoid divergent if-else-blocks
 - GPU threads are organized into groups (NVIDIA: warp, AMD: wavefront)
 - Groups are executed in lock step
 → If there is divergence, all threads execute the if block first and the else block next

- GPU threads are much more lightweight than CPU threads
 - Context switch is much cheaper on GPUs
 - Spawn many more threads than you have GPU cores
 → Hide memory latency behind computation