Thermoelectricity and electronic properties of Y1-xCexCrB4

Originally published:

May 2021

Physical Review B 103(2021), 195121

DOI: https://doi.org/10.1103/PhysRevB.103.195121

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-32839

Release of the secondary publication based on the publisher's specified embargo time.
Thermoelectricity and electronic properties of $Y_{1-x}Ce_xCrB_4$

Sever Flipo, Helge Rosner, Matej Bobnar, Kristina O. Kvaschnina, Andreas Leithe-Jasper, and Roman Gumeniuk

1Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg, Germany
2Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
3Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bauerstrasse 400, 01328 Dresden, Germany
4The Rossendorf Beamline at ESRF, CS 40220, 38043 Grenoble Cedex 9, France

(Received 27 October 2020; revised 24 March 2021; accepted 16 April 2021; published 11 May 2021)

Boron-rich materials combine chemical stability with refractory properties and, consequently, are interesting for high-temperature thermoelectric applications. Therefore, the magnetic, electrical, and thermal transport properties of the $Y_{1-x}Ce_xCrB_4$ series have been investigated here to employ the concept of correlation-enhanced thermoelectric properties. Combining x-ray diffraction and energy- or wavelength-dispersive spectrometry, we find a rather narrow stability range of $Y_{1-x}Ce_xCrB_4$, only samples on the Y- and Ce-rich substitution limits ($x = 0$, 0.05, 0.95, and 1) were obtained. Electrical resistivity data show a change from semiconducting ($x = 0$) to metallic behavior upon Ce substitution ($x \geq 0.95$). From magnetic susceptibility measurements and x-ray absorption spectroscopy, we find a temperature-dependent intermediate valence state of Ce of about $+3.5$. However, a fit of the magnetic susceptibility data to the Coqblin-Schrieffer model yields a surprisingly high Kondo temperature of about 1100 K. Together with the good thermal conductivity for the studied substitution series this impedes a suitable thermoelectric performance. Electronic structure calculations for YCrB$_4$ support its narrow gap semiconducting nature in contrast to previous studies. Surprisingly, its electronic structure is characterized by pronounced van Hove singularities very close to the Fermi-level E_F. They originate from nearly dispersionless Cr $3d_{2/3} - e_g$-derived bands in a large part of the Brillouin zone, suggesting the appearance of electronic instabilities upon rather small electron doping into these states.

DOI: 10.1103/PhysRevB.103.195121

I. INTRODUCTION

Thermoelectric (TE) materials, which can convert heat into electricity became an object of special scientific interest in the past few decades. Such research is motivated by the facts that solid-state energy conversion is suitable for harvesting waste heat completely environmentally friendly under various technical conditions. However, beside these clear advantages thermoelectrics are very demanding in optimization. As it is known, their efficiency, which is given as dimensionless figure of merit $ZT = S^2T\sigma/\kappa$, is expected to be high for materials revealing at the same time good electrical (σ) and poor thermal (κ) conductivities (S and T in the formula stand for Seebeck coefficient and temperature, respectively). The physically opposing requirements of high σ and low κ are a challenging obstacle for the achievement of the technically desired high ZT.

Another crucial issue for technical applications are the restricted working temperature ranges for specific materials. For instance, such prominent thermoelectrics as Bi$_2$Te$_3$, PbTe, and SiGe reveal the best efficiency (i.e., $ZT \approx 1$) at 300–500, 600–800, and 1100–1300 K, respectively [1,2]. With respect to high-temperature (HT) applications, intermetallic boron-rich materials (refractory and chemically stable compounds containing rare-earth transition metals as well as >50-at. % boron) seem to be promising. Only few such materials have been discovered up to now and some of them are reported to be narrow gap semiconductors [3,4] potentially revealing high TE efficiency [5]. A family of promising borides exhibits layered structures crystallizing with orthorhombic YCrB$_4$ structure type [6,7]. For this class of materials, electronic structure calculations indicated energy gaps of $\sim 0.2–0.5$ eV for YCrB$_4$ [8], YMnB$_4$ [9], YMoB$_4$, and YWB$_4$ [10]. However, further experimental investigations performed on YMoB$_4$ and its carbon- and iron-doped variants revealed their electrical transport characteristics, given as a power factor (PF) $PF = S^2\sigma \approx 10^{-4}$ W m$^{-1}$ K$^{-2}$ [11], still to be too low for a reasonably efficient TE material. For the improvement of the TE performance of 1:1:4 borides, a simple manipulation of the charge carrier concentration by electron or hole doping is unlikely to be sufficient.

Another potentially promising way to improve the TE properties might be the introduction of correlation effects by Ce substitution on the Y site. A classical example where this approach is working is CePd$_3$ - a dense Kondo system with Ce ions in the intermediate valence state (IVS) [12]. This system is characterized by an enhanced Kondo-temperature $T_K = 300$ K, which is proportional to the Ce-4f spin-fluctuation rate and, thus, to the strength of the hybridization of 4f electrons with conduction states [13]. This leads to the appearance of unoccupied Ce-4f states slightly above the Fermi level (E_F), which can become partially populated [14,15]. As a result of such electron correlations, atypically high values of
the Seebeck coefficient of $S \approx 115 \, \mu V \, K^{-1}$ at room temperature (RT) were observed, resulting in unexpectedly good TE efficiency $ZT \sim 0.2$ for CePd$_3$ [16].

In CeCrB$_4$, isotopic to YCrB$_4$, Ce seems to be in an IVS since its unit-cell volume deviates strongly from the linear dependence of other volumes of the isostructural RCrB$_4$ borides in an Iandelli plot [17]. In light of the above-mentioned Ce-$4f$ physics, we attempt in this paper a systematic study of the Ce substitution series in YCrB$_4$. Here we report on the crystal structures, magnetic properties, as well as electrical and thermal transports in the Y_{1-x}Ce$_x$CrB$_4$ series. Despite the chemical similarity between the ternary YCrB$_4$ and the CeCrB$_4$ borides, only limited solubility of Ce in the Y compound and vice versa is observed (i.e., $x = 0$, 0.05, 0.95, and 1) which might point to an IVS of Ce in the substitution series. Since previously published electronic structure calculations for the undoped YTB$_4$ compounds ($T = Cr$, Fe, Co, Mn, Mo, W, and Re) were not conclusive with respect to details of the structure property relations [8–11,14], in particular, the influence of the crystallographic boron positions, we also perform density functional (DFT) calculations to obtain more specific information.

II. EXPERIMENT

Samples with the nominal composition Y_{1-x}Ce$_x$CrB$_4$ ($x = 0$, 0.05, 0.10, 0.15, 0.85, 0.90, 0.95, and 1) were prepared from Y pieces (Lamprecht 99.9% purity), Ce rod (Chempur 99.9% purity), Cr pieces (Chempur 99.9% purity), and B crystalline powder (Alpha-Aesar 99.999% purity). In order to have a single button, the pieces were first carefully melted together, under Ar atmosphere on a water-cooled copper hearth. To ensure homogeneity they were then remelted several times. The mass loss in this process was below 2 wt %. Further heat treatment for 7 days was performed in W crucibles, which were sealed in Ta tubes at 1570 K. All handling was carried out in Ar-filled gloveboxes [MBraun, $p(O_2/H_2O) \leq 1$ ppm].

Differential scanning calorimetry was performed with a NETZSCH 404F1 on ternary YCrB$_4$ and CeCrB$_4$ in temperature ranges of 300–2070 K. Refractory YCr$_4$ reveals no thermal effects neither in warming nor in cooling curves, which suggests stability of the studied samples in the temperature range mentioned above. The CeCrB$_4$ boride shows two rather weak signals in the warming cycle at 1580 and 1585 K, which would indicate a peritectic decomposition of the studied phase in this temperature range. For this reason (to be able to compare unit cell parameters of the whole Y_{1-x}Ce$_x$CrB$_4$ series) the annealing temperature was chosen to be 1570 K.

All obtained samples were powdered, stress annealed at 1570 K for 2 h in Ta tubes under Ar atmosphere, and further characterized by powder x-ray diffraction (PXRD) on a Huber G670 imaging plate Guinier camera equipped with a curved Ge (111) monochromator [Cu K$_\alpha$ ($\lambda = 1.54056$ Å) or Co K$_\alpha$ ($\lambda = 1.78897$ Å)]. Phase analysis and indexing were performed using the WinXPOW program package [18]. The indexing of all PXRD patterns as well as further crystal structure refinements were performed using the WINGSD program package [19].

For microstructural studies, a small piece of each compound was embedded in a conductive resin and then polished. The obtained surface was investigated using a light-optical microscope (Zeiss Axioplan 2) and a scanning electron microscope (Jeol JSM-7800F). The chemical composition was analysed by means of energy dispersive x-ray spectroscopy (EDXS) (Quantax 400 EDXS system, Bruker) and wavelength dispersive x-ray spectroscopy (WDXS) (SX 100, Cameca) with CrB, YB$_4$, and CeB$_4$ as references. The obtained compositions are in good agreement with the nominal ones (Table I).

High-resolution fluorescence detection-x-ray absorption structure (HERFD-XAS) experiments were performed at the MARS beamline of SOLEIL in France. The incident energy was selected using the (111) reflection from a double Si crystal monochromator. HERFD-XAS spectra were measured using an x-ray emission spectrometer [20] at a 90° horizontal scattering angle. Sample, analyzer crystal, and photon detector (avalanche photodiode) were arranged in a vertical Rowland geometry. The Ce HERFD-XAS spectra at the L_{III} edge were obtained by recording the maximum intensity of the Ce L_{III} emission line (4839 eV) as a function of the incident energy. The emission energy was selected using the (400) reflection of one spherically bent Si crystal analyzer (with $R = 1$ m) aligned at a 71° Bragg angle. The size of the beam at the sample was 400-mm horizontal times 200-mm vertical. A combined (incident convoluted with emitted) energy resolution of 1.4 eV was obtained as determined by measuring the full width at half maximum (FWHM) of the elastic peak. Samples for the HERFD-XAS measurements were sealed with single kapton confinement.

The magnetic susceptibility was measured in the temperature range of 1.8–400 K in external fields between 0.1 and 7 T on a superconducting quantum interference device magnetometer (MPMS-XL7, Quantum Design). At low temperatures (4–350 K), the electrical resistivity, Seebeck coefficient, and thermal conductivity were measured simultaneously with the thermal transport option on the physical property measurement system (Quantum Design). At higher temperatures (300–1070 K), the electrical resistivity and Seebeck coefficient were measured on a ZEM-3 device (Ulvac-Riko). The HT thermal conductivity was estimated from $\kappa(T) = D(T)c_p(T)\delta(T)$, where $D(T)$ is the thermal diffusivity [measured using the laser flash method (LFA 457 MicroFlash, Netzsch)], $c_p(T)$ is the specific heat [obtained on a differential scanning calorimeter (DSC 8500, PerkinElmer)], and $\delta(T)$ is the density (assumed to be a constant [i.e., volumetric lattice expansion $\sim 0.9\%$ at 623 K] with an average compaction of 97%).

Relativistic DFT electronic structure calculations were performed using the full-potential FPL0 code [21], version fplo18.00-52. For the exchange-correlation potential, within the linear density approximation the parametrization of Perdew-Wang and for the general gradient approximation, the parametrization of Perdew-Burke-Ernzerhof [22] were chosen. To obtain precise band structure information, the calculations were carried out on a well-converged mesh of 1724 k points ($6 \times 12 \times 24$). The atomic positions were optimized to minimize the total energies with lattice parameters fixed to the experiment.
TABLE I. Crystallographic and physical property data for Y$_{1-x}$Ce$_x$CrB$_4$ (YCrB$_4$ structure type, space-group Pbam, \(Z = 4 \)).

<table>
<thead>
<tr>
<th>Compound</th>
<th>YCrB$_4$</th>
<th>Y${0.95}$Ce${0.05}$CrB$_4$</th>
<th>Y${0.05}$Ce${0.95}$CrB$_4$</th>
<th>CeCrB$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallographic data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDX composition</td>
<td>(Y_{0.96(3)}\text{Cr}_{0.93(3)} \text{B}_4)</td>
<td>(Y_{0.96(3)}\text{Ce}{0.04(3)} \text{Cr}{0.97(10)} \text{B}_4)</td>
<td>(Y_{0.05(3)}\text{Ce}{0.95(3)} \text{Cr}{0.96(3)} \text{B}_{0.94(10)} \text{B}_4)</td>
<td>(\text{B}_{1.12(10)})</td>
</tr>
<tr>
<td>(a (\text{Å}))</td>
<td>5.9368(4)</td>
<td>5.9359(2)</td>
<td>5.9684(3)</td>
<td>5.9707(5)</td>
</tr>
<tr>
<td>(b (\text{Å}))</td>
<td>11.4695(8)</td>
<td>11.4704(4)</td>
<td>11.5443(7)</td>
<td>11.5477(1)</td>
</tr>
<tr>
<td>(c (\text{Å}))</td>
<td>3.4606(2)</td>
<td>3.4642(2)</td>
<td>3.5364(2)</td>
<td>3.5400(3)</td>
</tr>
<tr>
<td>(V (\text{Å}^3))</td>
<td>235.64(5)</td>
<td>235.87(3)</td>
<td>243.67(4)</td>
<td>244.07(6)</td>
</tr>
<tr>
<td>Calculated density (\rho \text{ (g cm}^{-3})</td>
<td>5.19(1)</td>
<td>5.25(1)</td>
<td>6.34(1)</td>
<td>6.40(1)</td>
</tr>
<tr>
<td>(R_s/R_P)</td>
<td>0.074/0.156</td>
<td>0.050/0.111</td>
<td>0.061/0.132</td>
<td>0.066/0.147</td>
</tr>
<tr>
<td>Diffraction system</td>
<td>Guinier camera G670</td>
<td>Cu (K\alpha_1/1.54056)</td>
<td>Co (K\alpha_1/1.78897)</td>
<td>Cu (K\alpha_1/1.54056)</td>
</tr>
<tr>
<td>Radiation/(\lambda \text{ (Å)})</td>
<td>Cu (K\alpha_1/1.54056)</td>
<td>Co (K\alpha_1/1.78897)</td>
<td>Cu (K\alpha_1/1.54056)</td>
<td>Cu (K\alpha_1/1.54056)</td>
</tr>
<tr>
<td>(2\theta \text{ range (deg)/step (deg)})</td>
<td>20–100/0.005</td>
<td>20–100/0.005</td>
<td>20–100/0.005</td>
<td>20–100/0.005</td>
</tr>
<tr>
<td>Magnetism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi_0 \times 10^{-5} \text{ (emu mol}^{-1})</td>
<td>+3.8(1)</td>
<td>+6.7(1)</td>
<td>+56(1)</td>
<td></td>
</tr>
<tr>
<td>(\mu_{\text{eff}} \text{ (} \mu \text{B) })</td>
<td>0.35(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical resistivity and power factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_0 \text{ (} \mu \text{Ω cm) })</td>
<td>17.6(9)</td>
<td>4.05(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_300 \text{ (} \mu \text{Ω cm) })</td>
<td>116</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual resistivity ratios (RRR) ((\mu \text{Ω cm) })</td>
<td>6.7</td>
<td>26.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{PF}_{\text{max}} \text{ (} \mu \text{W cm}^{-1} \text{K}^{-2} \text{) at } T/K)</td>
<td>2.23 [375]</td>
<td>8.91 [422]</td>
<td>0.52 [707]</td>
<td>0.46 [613]</td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

A. Electronic structures

Owing to the previous inconclusive results for the electronic structure of YCrB$_4$, the strong dependence on structural details and the deviation of CeCrB$_4$ in the Iandelli plot (strong volume reduction compared to the 4\(f \) series [17,23]) we try to find out in a first step whether these compounds are intrinsically metals or semiconductors.

The electronic density of states (DOS) for YCrB$_4$ is shown in Fig. 1. The valence band is rather broad (about 13 eV) due to the strong hybridization of Cr 3\(d \) and B 2\(p \) states. At higher energies above \(-2 \text{ eV} \) the valence band is dominated by Cr states at energies below \(-2 \text{ eV} \) by B states. For the experimental crystal structure, we find insulating behavior of the compound with a narrow gap of about 140 meV. This gap is of indirect nature (see Fig. 2 upper panel). Surprisingly, using the previously published structural data of Kuz’ma [6] we find a metallic solution (see Fig. 2 upper panel) since the electron and the hole band are shifted by about 300 meV with respect to each other. On a larger energy scale, the valence band for both crystal structures is very similar (not shown).

The different behavior with respect to the metalliclicity can be related to the exact B positions, which are intrinsically difficult to determine by x-ray diffraction in the presence of heavy atoms. From the DFT calculations, the crystallographic data presented in this paper are strongly favored by 330 meV per formula unit compared to the structure of Kuz’ma [6]. Relaxing the B positions for our crystallographic data with respect to the total energy yields only small changes. Depending on the kind of relaxation, all atoms or B atoms only, the electronic gap varies by about \(\pm 40 \text{ meV} \) (see the inset in Fig. 1), thus, the compound is always exhibiting insulating nature.

For CeCrB$_4$, the correlated nature of the 4\(f \) electron prohibits a straightforward DFT calculation of its electronic structure. However, to estimate the influence of the considerably larger lattice parameters of the Ce compound compared to the Y system, we exclude the 4\(f \) level from the valence band in our calculation. As expected, the larger interatomic...
The panel shows the Cr 3d states shifted against each other, resulting in metallic behavior. The lower electronic band structure shows a decrease of the overall valence-band width compared to the calculated total energy even leads to a narrowing of the gap at \(E_F \). This could be of particular interest since one would expect that these out-of-plane states are robust against substitution at other sites than Cr. If a large enough number of charge carriers can be introduced chemically, one would arrive at a very high metallic DOS at the Fermi level which certainly should drive an electronic instability. From our results, electron doping seems to be the method of choice since the Cr 3d \(z^2 - r^2 \) orbital is unlikely to induce a nonmetallic state for CeCrB\(_4\). However, regarding the correlated nature of 4f states, in general, this calculation result needs experimental justification. Nonetheless, this result suggests that a partial replacement of Y by Ce might result in more promising thermoelectric properties than in the ternary CeCrB\(_4\), envisioning a diluted Kondo-like scenario with a gap or a small DOS at \(E_F \) and correlated 4f states close to \(E_F \).

Independent from the question of metallicity, a very interesting and prominent feature in the electronic structure of YCrB\(_4\) are the narrow peaks near the Fermi level (see Fig. 1). These states originate predominantly from the Cr 3d \(z^2 - r^2 \) orbital. The m quantum numbers +0, +1, +2, −1, and −2 stand for the \(3d^2 - r^2 \), \(xz \), \(x^2 + y^2 \), \(yz \), and \(xy \) orbitals, respectively.

Distances lead to a reduction of the overall valence-band width (see Fig. S1 in the Supplemental Material [24]). Surprisingly, the gap at \(E_F \), present in YCrB\(_4\), completely disappears, and we obtain a sizable DOS at \(E_F \) (see Fig. S1 in the Supplemental Material [24]). The closure of this gap is robust with respect to the exact B positions. Relaxing these parameters with respect to the calculated total energy even leads to a further increase in the DOS(\(E_F \)). Since there is no other gaplike feature above \(E_F \) (see Fig. S1 in the Supplemental Material [24]), a contribution from nonlocalized 4f electrons is unlikely to induce a nonmetallic state for CeCrB\(_4\). However, these out-of-plane states are robust against substitution at other sites than Cr. If a large enough number of charge carriers can be introduced chemically, one would arrive at a very high metallic DOS at the Fermi level which certainly should drive an electronic instability. From our results, electron doping seems to be the method of choice since the Cr 3d \(z^2 - r^2 \) singularity lies directly above the Fermi level (see the inset in Fig. 1).

B. Phase formation and crystal structure

The strongest peaks in the PXRD of Y\(_{1-x}\)Ce\(_x\)CrB\(_4\) samples with \(x = 0, 0.05, 0.95, \) and 1 (in the inset to Fig. 3 selected regions of these PXRDs are depicted) can be indexed in the space-group \(Pbam \). The unit-cell parameters are presented in Table I. However, the specimens from this series with Ce-content \(x = 0.10, 0.15, 0.50, 0.85, \) and 0.90 were found to be multiphase (i.e., containing simultaneously YCrB\(_4\) and CeCrB\(_4\) phases, see Fig. S2 in the Supplemental Material [24]). Their unit-cell volumes strongly deviate from a linear Vegard-like dependence [25,26] (Fig. 3) assuming complete mutual substitution of Y and Ce atoms in YCrB\(_4\) and CeCrB\(_4\) borides. Thus, we have to conclude that the solubility of the fourth component in the ternaries YCrB\(_4\) and CeCrB\(_4\) is unexpectedly small indicating the importance of other factors in addition to the atomic-size factor [27]. This limited...
solubility [28–30] could be related to the strong differences in the valences of Ce (i.e., $\sim +3.5$) and of Y (i.e., +3) together with the concomitant size mismatch. For more details see the discussion below.

To refine the crystal structures of $Y_{1-x}Ce_xCrB_4$ ($x = 0, 0.05, 0.95,$ and 1) the starting structural model of the YCrB$_4$ type [6] has been used. The crystallographic details of the performed Rietveld refinements are collected in Table I, whereas obtained atomic coordinates and displacement parameters for the studied borides are presented in Table S1 in the Supplemental Material [24]. For YCrB$_4$ we find slightly different boron atomic parameters compared to the previous investigation [6]. The typical theoretical and differential profiles (on the example of $Y_{0.05}Ce_{0.05}CrB_4$) are depicted in Fig. 4. The measured 2θ range (i.e., $2\theta_{\text{max}}$ for Guinier camera G670 is of 100°) do not allow to reliably refine the occupational parameters for Y-Ce statistical mixtures as well as displacement parameters of light B atoms (Table S1 in the Supplemental Material [24]). Nevertheless, the relatively low reliability R factors nicely confirm the correctness of the chosen structural model.

Since the structural peculiarities of the YCrB$_4$ type and its relationship with other structures have been widely discussed in the literature [6,31,32], we only mention here that this structure consists of two planar layers. The layer at $z = 1/2$ is composed of condensed pentagonal and heptagonal rings built by B atoms, whereas the layer at $z = 0$ is consisting of Y/Ce and Cr atoms (inset to Fig. 4). Similar to earlier reports [31,32] the interatomic distances (not shown) in the refined structures are close to the sums of the atomic radii of the elements given in Ref. [33]. However, the small variation in the boron parameters significantly influences the electronic structure as has been outlined above and, thus, the physical properties (see below).

C. XAS

XAS data of $Y_{1-x}Ce_xCrB_4$ ($x = 0.05, 0.95, 1$) borides measured at the Ce L_{III} edge in the absorption mode are compared with high-resolution spectra of reference compounds Ce(NO$_3$)$_3$ (Ce$^{3+}$, 4f^1 configuration) and CeO$_2$ (Ce$^{4+}$, 4f^0 configuration) in Fig. 5 (all measurements were performed at room temperature). The Ce$^{3+}$ system is characterized by only one white line centered at ~ 5727 eV, whereas Ce$^{4+}$ shows two groups of features at ~ 5730 and ~ 5740 eV. As one can see from Fig. 5, spectra of CeCrB$_4$ and $Y_{1-x}Ce_xCrB_4$ ($x = 0.05, 0.95$) borides are characterized by two broad white lines, which occur at nearly the same energy positions as the groups of features in the spectrum of CeO$_2$. Also, the FWHM of the peaks in the borides spectra as well as their intensities are almost the same as those of two white lines centered at ~ 5730 eV and another two at ~ 5740 eV in XAS of CeO$_2$.

A deconvolution of the XAS spectra shows that the mean valence ν of Ce is 3.51(2), 3.55(2), and 3.43(2) for CeCrB$_4$, $Y_{0.05}Ce_{0.95}CrB_4$, and $Y_{0.95}Ce_{0.05}CrB_4$, respectively.

D. Magnetic susceptibility

Temperature dependencies of magnetic susceptibilities $\chi(T)$ and reciprocal $\chi^{-1}(T)$ for $Y_{1-x}Ce_xCrB_4$ ($x = 0, 0.05, 0.95, 1$) are depicted in Figs. 6 and S3 of the Supplemental Material [24], respectively. Unexpectedly, $\chi(T)$ of YCrB$_4$ is found to reveal a strong curvature with relatively large $\chi_0 = 3.8 \times 10^{-3}$ emu mol$^{-1}$ (Table I). Such a discrepancy with the theoretical calculations, indicating YCrB$_4$ to be a semiconductor with NO DOS at E_F, can be explained with the presence of some minor paramagnetic impurities in the studied sample (see the discussion below and Figs. S3 and S4 of the Supplemental Material [24]). Incorporation of Ce in the structure of YCrB$_4$ leads to the gradual increase in $\chi(T)$ with increasing Ce content. Interestingly, $\chi^{-1}(T)$ of $Y_{1-x}Ce_xCrB_4$ ($x = 0.05, 0.95,$ and 1) are linear in the narrow temperature range of 250–350 K (Fig. S5 in the Supplemental Material [24]). Therefore, the magnetic susceptibilities of the

![Figure 4](image-url)

FIG. 4. Experimental, theoretically calculated, and differential profiles for $Y_{0.05}Ce_{0.05}CrB_4$. The inset shows condensed heptagonal and pentagonal B rings together with Y and Cr atoms at their centers in the structure of the YCrB$_4$ type in a view along the c-axis. The unit cell is outlined by the blue rectangle (for crystallographic details see Table I and Supplemental Material Fig. S1 [24]).

![Figure 5](image-url)

FIG. 5. X-ray absorption spectra of Ce(NO$_3$)$_3$, CeO$_2$, and $Y_{1-x}Ce_xCrB_4$ borides at the Ce L_{III} edge.
FIG. 6. Temperature dependence of the magnetic susceptibility of $Y_{1-x}Ce_xCrB_4$ borides together with fits to modified Curie law (purple lines). Inset (a): magnetic susceptibility of $Y_{0.05}Ce_{0.95}CrB_4$ together with a fit to the interconfiguration fluctuation (ICF) model and prediction of Coqblin-Schrieffer for the $J = 3/2$ multiplet. Inset (b): temperature dependence of the valency v for $Y_{0.05}Ce_{0.95}CrB_4$ deduced from the ICF fit. Note: The anomaly at ~ 50 K is due to a small trace of oxygen impurity in the liquid helium used at the time of the measurements.

samples with $x = 0.05$ and 1 were fit to a modified Curie law (Curie + temperature-independent term) for $T > 100$ K. The obtained values of χ_0 and effective magnetic moments are presented in Table I. Small μ_{eff} (due to the Ce$^{3+}$ contribution) increasing with x correlate well with the predominantly 4f^0 state of Ce atoms (i.e., Ce$^{4+}$) observed in XAS. No phase transitions are seen in the susceptibilities of $Y_{1-x}Ce_xCrB_4$ ($x = 0$, 0.05, and 1) down to 1.8 K.

The magnetic susceptibility of $Y_{0.05}Ce_{0.95}CrB_4$ shows some special features comparing to the other $Y_{1-x}Ce_xCrB_4$ borides. It reveals a broad maximum centered at ~ 250 K, then decreases down to ~ 100 K and finally slightly increases below this temperature. Such a behavior is a signature of a temperature-dependent IVS of Ce atoms in an intermetallic compound and could point towards electron correlation effects [16,34,35].

Kondo systems with large characteristic energy are frequently characterized by a broad maximum in $\chi(T)$ as well. Therefore, we compared the susceptibility of $Y_{0.05}Ce_{0.95}CrB_4$ with the Coqblin-Schrieffer (CS) model calculated by Rajan [36].

Interestingly, in the temperature range from 100 to 400 K the best description of $\chi(T)$ is observed for $J = 3/2$ instead of the $J = 5/2$ multiplet expected for Ce$^{3+}$ [scaling energy $T_0 = 1321$ K; see inset (a) of Fig. 6]. This discrepancy can be understood due the fact that the CS model does not take into account crystal electric field (CEF) splitting effects [36]. The CEF splitting scheme for $Y_{0.05}Ce_{0.95}CrB_4$ is likely of rather complex character because of the low point symmetry of the Ce position. The fact that the data fit better to a $J = 3/2$ instead of the $J = 5/2$ multiplet are consistent with this idea. Similar effects were reported for Ce$_x$La$_{1-x}$Cu$_{2.03}$Si$_2$ [37], YbCu$_{0.7}$Ag$_{0.3}$ [38], and YbCuAl [39] where in the case of the Yb-containing compounds $J = 5/2$ multiplets instead of $J = 7/2$ provided good fits to the data. Here it should be noted that the CEF splitting can be estimated using low-temperature field-dependent specific-heat capacity and/or inelastic neutron scattering only if it is of different order of magnitude compared to the strength of the Kondo interaction. Otherwise, both methods could fail in the estimation of the needed parameters as it was observed for the YbCuAl IV system [40].

Despite the discrepancy with the degeneracy of the $Y_{0.05}Ce_{0.95}CrB_4$ system, we converted the scaling energy T_0 into a Kondo temperature (in its high-T definition) according to $T_K = 2\pi T_0 W_{Jf}/(2J + 1) = 1107$ K, where $W_{Jf} = 0.5335$ is the Wilson number that relates χ_0 to T_K [41]. The Kondo temperature $T_K = 1107$ K estimated for $Y_{0.05}Ce_{0.95}CrB_4$ in this way is by a factor of about 4 larger than the T_K observed for CePd$_2$ ($T_K = 300$ K [16]). This is consistent with the fact that neither Kondo correlations nor the anticipated improvement of the TE performance could be observed for $T < T_K$ in the transport properties (see below).

Trying to deduce the Ce valence from the magnetic susceptibility measurements we described the broad maximum in $\chi(T)$ by applying the simplified two-level ICF [42] (i.e., neglecting the complicated Ce$^{13+}$ ions $J = 5/2$ multiplet),

$$\chi_{\text{ICF}}(T) = N_\Lambda \mu_{\text{eff}}^2 \frac{1 - n_{\text{eff}}}{k_B(T + T_d)},$$

where n_{eff} is the fractional occupation of the +4 state, given as

$$n_{\text{eff}} = \frac{1}{1 + 6 \exp[-E_{\text{ex}}/k_B(T + T_d)]}.$$

In Eq. (2) E_{ex} is the interconfigurational excitation energy, and T_d defines a width of all sublevels of two configurations. To perform such a fit $\chi(T)$ of $Y_{0.05}Ce_{0.95}CrB_4$ has to be additionally corrected on magnetic impurities (upturn for $T < 100$ K) and on paramagnetism due to conduction electrons. The terms for such corrections are $\chi_{\text{imp}}(T) = C_{\text{imp}}/(T - \theta_{\text{imp}})$ and χ_0, respectively. Finally, the magnetic susceptibility of the studied boride is given as

$$\chi(T) = \chi_{\text{ICF}}(T) + \chi_{\text{imp}}(T) + \chi_0.$$

A fit to Eq. (3) [inset (a) of Fig. 6] results in $E_{\text{ex}}/k_B = 1747(24)$ K; $T_{\text{sf}} = 594(11)$ K; $C_{\text{imp}} = 5.4(1)$ $\times 10^{-4}$ emu K mol$^{-1}$; $\theta_{\text{imp}} = -17.4(8)$ K, and $\chi_0 = 1.22(6)$ $\times 10^{-4}$ emu K mol$^{-1}$. Then, the average valence of Ce atoms in $Y_{0.05}Ce_{0.95}CrB_4$ is estimated as $\nu_{\text{ICF}} = 4n_{\text{eff}} + 3(1 - n_{\text{exp}})$. The so calculated $\nu_{\text{ICF}} = +3.54$ at RT is in excellent agreement with the value deduced from XAS.

The close values of Ce valences in CeCrB$_4$ and $Y_{0.05}Ce_{0.95}CrB_4$ obtained from XAS and the much stronger magnetism of the undoped ternary Ce boride indicated a contribution of an additional paramagnetic impurity phase (e.g., CrB$_2$). To estimate its order of magnitude we subtracted $\chi(T)$ of the sample with $x = 0.95$ from this of $x = 1$ and fit the obtained difference to a Curie-Weiss (CW) law. The fit resulted in 4.1% of impurity and a small negative Weiss temperature $\theta_\nu = -6$ K (Fig. S6 in the Supplemental Material [24]). Subtraction of this CW part from $\chi(T)$ of CeCrB$_4$
resulted in a well-pronounced maximum comparable with this of $Y_{0.05}Ce_{0.95}CrB_4$ and is reminiscent of the CS model for a $J = 3/2$ multiplet (inset to Fig. S6 in the Supplemental Material [24]) with characteristic temperature $T_0 = 867$ K. Estimating the Kondo temperature in the same way as described above results in $T_K = 727$ K and is by a factor of about 2 smaller than this of $Y_{0.05}Ce_{0.95}CrB_4$. However, such a comparison is tentative since the exact amount of the paramagnetic impurity in CeCrB$_4$ is unknown. Nevertheless, T_K obtained from this estimation is still well above the RT and agrees well with the simple metallic properties of the ternary boride.

E. Electrical transport properties

The temperature-dependent electrical resistivities for $Y_{1-x}Ce_xCrB_4$ borides are presented in Fig. 7. An increase in Ce-content x in this series leads to the reduction of $\rho(T)$ by a factor of ~ 20 and, thus, to a change in the character of conductivity from a semimetallic to a metallic one. The temperature dependence of the resistivity of $YCrB_4$ (HT range is in good agreement with an earlier report [11]) shows a rather complex behavior revealing a sharp minimum centered at ~ 50 K and a broad maximum at ~ 450 K followed by an activationlike decrease in $\rho(T)$ as expected for semiconductors. Such a behavior is reminiscent of those of Ag$_2$TiSe$_2$ [43], TiSe$_2$ [44], ZrTe$_5$ [45], or RhSb$_2$ [46] narrow gap semiconductors as well as of bad metals, e.g., some rare-earth-containing Heusler compounds [47] and for the strongly disordered Ca$_3$Pt$_{4+y}$Ge$_{13-y}$ Remeika phase [48]. In most cases it is, however, less understood. The broad peak in resistivity of TiSe$_2$ centered at ~ 165 K is explained with a crossover between a low-temperature regime with electronlike carriers only to a regime around room temperature where thermally activated and highly mobile hololeike carriers dominate the conductivity [44].

Taking into account, that $\rho(T)$ of semiconductors is highly sensitive to the presence of impurities this prompted us to perform additional characterization of the sample after physical property measurements. XRD and EDX revealed it to be partially inhomogeneous and to contain small amounts of YB$_2$, Cr$_3$B$_4$, and CrB$_2$ phases (Fig. S4 in the Supplemental Material [24]).

Small doping of YCrB$_4$ with Ce (i.e., $Y_{0.95}Ce_{0.05}CrB_4$) leads to a reduction of $\rho(T)$ (i.e., more metallic character of conducting mechanism) and to a remarkable suppression of the broad maximum with simultaneous shift of its center towards higher temperatures (~ 550 K). Both $\rho(T)$'s for $Y_{0.05}Ce_{0.95}CrB_4$ and CeCrB$_4$ are almost identical ($\rho(T)$ is slightly higher for the Y-containing compound, which is in agreement with a common tendency in the whole $Y_{1-x}Ce_xCrB_4$ series) and increase with increasing temperature in the whole range. The absence of a Kondo-like minimum in $\rho(T)$ of $Y_{0.05}Ce_{0.95}CrB_4$ confirms again the Kondo-temperature T_K to be higher than 800 K (in agreement with $T_K = 1107$ K deduced from analysis of the magnetic susceptibility).

The temperature dependence of electrical resistivity of IV systems is expected to follow an $\sim T^2$ law (i.e., Fermi-liquid behavior due to the paramagnon picture [49]) as is the case for, e.g., Ce$_3$Eu$_{0.03}$Pd$_3$ [50], Ce$_2$Rh$_2$Al$_3$ [51], CeNiSi$_2$ [52], Ce$_2$Co$_2$Ge$_3$ [53], Ce$_2$Zn$_2$Sb$_2$ [54], etc. However, also IV systems revealing a well-pronounced metallic character of $\rho(T)$ dependences have been reported to exist. For instance, electrical resistivity is found to be linear in the higher-temperature range for CeRh$_8$Si$_8$ [55]. For YbCu$_4$In [56] it could be fitted to a sum of ($\rho_0 + AT^2$) (indicating evolution of the Fermi-liquid state) and a T^5 term (suggesting a conventional electron-phonon scattering mechanism). In the case of CeB$_4$ [57] the electrical resistivity can be described by the Bloch-Grüneisen equation. $\rho(T)$ of $Y_{0.05}Ce_{0.95}CrB_4$ and CeCrB$_4$ in the temperature range up to 60 K can be described by a sum of T^2 and T^5 terms (inset to Fig. 7) confirming a scenario where the electron-phonon scattering plays an important role in their conduction mechanisms.

The calculated RRR = $\rho(300)/\rho(0)$ (Table I) show the ternary CeCrB$_4$ boride to be of much better quality than the doped $Y_{0.05}Ce_{0.95}CrB_4$, which can be explained by additional structural disorder in the latter sample.

The temperature variations of the Seebeck coefficient, for the $Y_{1-x}Ce_xCrB_4$ series are depicted in Fig. 8. In common they show the same trend as those observed for electrical resistivities (i.e., increase in Ce-content x leads to more pronounced metallic properties) in agreement with the relation between $S(T)$ and $\rho(T)$ [i.e.,
$S = (8\pi^2 k_\text{B}^2/3e\hbar^2)m^*T(\varepsilon\mu/3)^{2/3}$, where m^* is effective mass and μ is the charge carriers mobility [58]. Also, the $Y_{1-x}Ce_xCrB_4$ series shows negative values of $S(T)$ (with exception for both Ce-rich compounds which reveal small positive values of $S \lesssim 3 \mu V K^{-1}$ for $T < 300$ K) implying predominance of electron-type charge carriers in the studied borides.

The $S(T)$ data of YCrB$_4$ and Y$_{0.95}Ce_{0.05}$CrB$_4$ reveal well-pronounced minima centered at ~ 400 K. Similar temperature behavior of the Seebeck coefficients is reported for numerous semiconductors. Typical examples are Si ($T_{\text{min}} \approx 180$ K) [59], FeGa$_3$ ($T_{\text{min}} \approx 20$ K) [60], In$_2$S$_3$ ($T_{\text{min}} \approx 180$ K) [61], In$_{0.74}$In$_{1.8}$Fe$_{0.2}$S$_4$ ($T_{\text{min}} \approx 300$ K) [62], etc. A low-temperature minimum/maximum (T_{min} is normally lower than $\theta_D/3$) preceded by a drastic increase/decrease in S is normally a signature of the phonon-drag effect [63] (evidenced for Si [59] and FeGa$_3$ [60]). The origin of such a high-temperature behavior of $S(T)$ is less clear. Since intermetallic borides are known to be very hard materials and to possess high melting points [64,65] one could expect high Debye temperatures for YCrB$_4$ and Y$_{0.95}Ce_{0.05}$CrB$_4$. From theoretical calculation a value of $\theta_D = 965$ K is given in Ref. [9]. Thus, a phonon-drag scenario is very likely in this case.

Y$_{0.05}Ce_{0.95}$CrB$_4$ and CeCrB$_4$ reveal small Seebeck coefficients, which decrease almost linearly with increasing temperature as expected for metals. However, these values are by two to three orders of magnitude smaller than those observed for good thermoelectrics [5].

The efficiency of electrical transport properties for possible thermoelectric applications is estimated as power factor PF. The maximal values of PF at a certain temperature for the $Y_{1-x}Ce_xCrB_4$ series are listed in Table I. They are small in comparison with those expected for a good TE material [5] and on the same order of magnitude as those previously reported for YCrB$_4$ in Ref. [11]. The modest PF values can be explained by enhanced electrical resistivity in Y-rich borides and small Seebeck coefficients in the Ce-rich compounds.

F. Thermal conductivity

The thermal conductivity $\kappa(T)$ of $Y_{1-x}Ce_xCrB_4$ is relatively large even at higher temperatures [Fig. 9(a)] and of the same order of magnitude as those observed for isostructural TmAlB$_4$ [66] and RReB$_4$ [31] borides. Also, all of them are characterized by well-pronounced maxima in $\kappa(T)$ centered at $\sim 50–80$ K and by nearly the same temperature-independent value of $\kappa \approx 10$ W m$^{-1}$ K$^{-1}$ for the $T > 400$ K range [Fig. 9(a)]. The presence of low-temperature maxima in the thermal conductivities of $Y_{1-x}Ce_xCrB_4$ borides confirm them to be well crystallized (see Fig. S3 in the Supplemental Material [24]) and to contain less impurities [67].

The electronic contribution to the thermal conductivity is calculated from the Wiedemann-Franz equation: $\kappa_{el} = L_0T/\rho(T)$ (Lorenz number $L_0 = 2.44 \times 10^{-8}$ W Ω K$^{-2}$). As one can see from the inset in Fig. 9(a), κ_{el} dominates $\kappa(T)$ of Ce-rich borides (i.e., CeCrB$_4$ and Y$_{0.05}Ce_{0.95}$CrB$_4$). For YCrB$_4$ and Y$_{0.95}Ce_{0.05}$CrB$_4$ κ_{el} is negligibly small. Thus, here the phononic contribution given as $\kappa_{ph} = \kappa - \kappa_{el}$ is prevailing [Fig. 9(b)]. Such a behavior agrees well with the semiconducting nature of the Y-rich borides [a maximum in $\kappa(T)$ is of phononic origin] and the metallicity of the Ce-rich ones (κ_{el} is
characterized by a maximum). In the low-temperature range (10–30 K) the phononic thermal conductivities of all samples [inset in Fig. 9(b)] reveal a linear T dependence, indicating κ_{ph} to be dominated by point-defect scattering mechanisms [67,68]. A behavior of κ_{ph} proportional to T^3, which corresponds to the dominance of grain-boundary scattering, is only visible in the 3–8-K range for the $Y_{0.05}Ce_{0.95}CrB_4$ boride. Finally, the high-temperature κ_{ph} ($T > 400$ K) is proportional to T^{-1} for all borides studied here [inset to Fig. 9(b)], which indicate the umklapp processes to dominate the phonon scattering there [67].

The thermal conductivities of the $Y_{1-x}Ce_xCrB_4$ series are by approximately two orders of magnitude larger than those of good thermoelectric materials ($\kappa < 5 \text{ W m}^{-1}\text{K}^{-1}$) [69]. Thus, the large values of $\kappa(T)$ together with small Seebeck coefficients of thermopower $S(T)$ result in poor thermoelectric performance of our $Y_{1-x}Ce_xCrB_4$ series: the highest dimensionless figure of merit $ZT = 0.06$ ($ZT \approx 1$ is expected for the state-of-the-art materials) is observed for $Y_{0.95}Ce_{0.05}CrB_4$ at 800 K. This is an observation which is also reported for other borides with related crystal structures [70].

This low-ZT value should be close to a single-crystal measurement because of the large grain size of a few hundred micrometers for our samples (see Fig. S3 in the Supplemental Material [24]). It is well known that crystal imperfections and defects, including grain boundaries, scatter phonons much better than electrons, which should result in the lowering of the thermal conductivity and, thus, leads to higher ZT values [71–73].

Even more, despite the grain boundaries being expected to act as obstacles against the asymmetric thermal diffusion of charge carriers from which the Seebeck effect originates, in some cases an enhancement of $|S|$ for fine polycrystalline samples in comparison with single crystals has been reported [74,75].

It can be expected that an introduction of an array of grain boundaries in $Y_{1-x}Ce_xCrB_4$ (e.g., by spark plasma sintering of fine powdered samples) could improve their TE performance. However, a technical application of $Y_{1-x}Ce_xCrB_4$ as thermoelectric material seems not likely.

IV. SUMMARY AND CONCLUSIONS

Stimulated by density functional calculation results regarding the semiconducting or metallic nature of $YCrB_4$ and $CeCrB_4$, we studied a quaternary substitution series of $Y_{1-x}Ce_xCrB_4$ experimentally targeting their possibly promising thermoelectric properties. Like in $CePd_3$ [12], electron correlation effects from the insertion of Ce were anticipated to lead to a strongly enhanced Seebeck coefficient and a sizable figure of merit. Together with its intrinsic refractory and chemical inert properties, $Y_{1-x}Ce_xCrB_4$ could have been an attractive material for high-temperature applications.

In contrast to expectations from combined x-ray diffraction and EDXS/WDXS studies, we find that the stability range of $Y_{1-x}Ce_xCrB_4$ is rather narrow, and only a limited solid solution is formed. We obtain only samples on the Y- and Ce-rich substitution limits, comprising a maximum of 5% of the respective substituents ($x = 0, 0.05, 0.95, 1$). The significant size mismatch of Y and Ce ions (being in an intermediate valence state) most probably causes such behavior.

Doping of $YCrB_4$ with Ce leads to a strong reduction of the resistivity. Whereas the Y-rich $Y_{0.05}Ce_{0.95}CrB_4$ still shows a broad maximum at higher temperatures and sizable resistivity at low temperatures, the Ce-rich substituents show pronounced metallic character (see Fig. 7). XAS revealed Ce atoms to be in nearly the same oxidation state of about $+3.5$ (see Fig. 5) throughout the series $Y_{1-x}Ce_xCrB_4$ ($x = 0.05, 0.95, 1$).

For the Ce-rich compounds ($x = 0.95$ and 1), the intermediate Ce valence concluded from XAS is in good agreement with the measured magnetic susceptibilities (see Fig. 6). A broad maximum in the magnetic susceptibility of both materials (after subtraction of a paramagnetic impurity for $x = 1$) is described by the Kondo model of Cooqlin and Schrieffer (see the insets in Fig. 6 and Fig. S6 in the Supplemental Material [24]). A quantitative analysis yields a Kondo-temperature $T_K = 1107$ K (for $x = 0.95$) which is about four times higher than $T_K = 300$ K of the intermetallic thermoelectric $CePd_3$.

Applying a simplified two-level interconfiguration fluctuation model, the slightly temperature-dependent intermediate valence of Ce (+3.54) is in line with the observations from XAS at room temperature.

The absolute thermopower values for the Y-rich $Y_{0.95}Ce_{0.05}CrB_4$ and $YCrB_4$ compounds are rather large and are passing through broad maxima. However, the thermopower for the Ce-rich $Y_{0.05}Ce_{0.95}CrB_4$ and CrB_4 borides is small with a slight increase for the high-temperature range. Thus, in contrast to the motivation of our paper, the electron correlation effects for the Ce-rich materials do not influence significantly the transport properties of these systems. This can be explained by their extremely high Kondo temperature.

The $Y_{1-x}Ce_xCrB_4$ ($x = 0, 0.05, 0.95, 1$) series reveals an unexpectedly good thermal conductivity. Both ternaries show well-pronounced maxima at about 70 and 45 K, respectively, which become suppressed with incorporation of the fourth component because of structural disorder. Also, the mechanism of the thermal conductivity is predominantly electronic in Ce-rich borides and predominantly phononic for the Y-rich $Y_{0.95}Ce_{0.05}CrB_4$ and $YCrB_4$. Finally, the good thermal conductivity in the $Y_{1-x}Ce_xCrB_4$ series results in a poor thermoelectric performance with a dimensionless figure-of-merit $ZT = 0.06$ at 800 K.

Although the here applied concept of Ce substitution in $YCrB_4$ to obtain materials with high thermoelectric performance was not successful, the accompanying DFT calculations revealed an unusual and interesting feature in the electronic structure of the parent compound $YCrB_4$. Besides yielding semiconducting behavior with a narrow indirect gap (~140 meV for the experimental B positions, see Fig. 1) and metallic behavior for the $CeCrB_4$ (in the limit of fully localized 4f electrons, see Fig. S1 in the Supplemental Material [24]), the electronic densities of states are characterized by narrow peaks near the Fermi level. These singularities are predominantly from the Cr 3$d_{x^2−y^2}$ orbitals and have a pronounced quasi-one-dimensional character (see Fig. 2).
Although the electronic band structure of YCrB₄ is very sensitive to the B-B distances in the crystal structure, these van Hove-like singularities should, therefore, be rather robust. A small amount of electron doping should shift the Fermi level upwards into the lower-lying narrow peak and due to its very high DOS most likely cause an electronic instability. Since a partial substitution of Y by Ce is not suitable for this purpose (due to its intermediate valence of about +3.5 as this paper has demonstrated), a study of alternative substitution is presently executed.

ACKNOWLEDGMENTS

This work was performed within DFG Project No. 324961605. We are grateful to M. Eckert, P. Scheppan, and S. Kostmann for their help during the metallographic investigations. We express our thanks to H. Borrmann and S. Hückmann for performing x-ray diffraction measurements. U. Nitzsche is acknowledged for technical support of the calculations. We thank E. Zuniga and P. Wyzga for their assistance during high-temperature electrical transport measurements and Y. Grin for his interest.

