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A particle-center-averaged Euler-Euler model for

monodisperse bubbly flows

Hongmei Lyu*, Dirk Lucas, Roland Rzehak, Fabian Schlegel

Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner
Landstrasse 400, 01328 Dresden

Abstract

The standard Euler-Euler model is based on the phase-averaging method.
Each bubble force is a function of the local gas volume fraction. As a result,
the coherent motion of each bubble as a whole is not enforced when the bubble
diameter is larger than the mesh size. However, the bubble force models are
typically developed by tracking the bubbles’ centers of mass and assuming
that the forces act on these locations. In simulations, this inconsistency can
lead to a nonphysical gas concentration in the center or near the wall of a
pipe when the bubble diameter is larger than the mesh size. Besides, a mesh
independent solution may not exist in such cases.

In the present contribution, a particle-center-averaging method is used to
average the solution variables for the disperse phase, which allows to repre-
sent the bubble forces as forces that act on the bubbles’ centers of mass. An
approach to simulate bubbly flows is formed by combining the Euler-Euler
model framework using the particle-center-averaging method and a diffusion-
based method that relates phase-averaged and particle-center-averaged quan-
tities. The remediation of the inconsistency with the standard Euler-Euler
model based on phase-averaging method is demonstrated using a simplified
two-dimensional test case. The test results illustrate that the particle-center-
averaging method can alleviate the over-prediction of the gas volume fraction
peak in the channel center and provide mesh independent solutions. Fur-
thermore, a comparison of both approaches is shown for several bubbly pipe
flow cases where experimental data are available. The results show that the
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particle-center-averaging method can alleviate the over-prediction of the gas
volume fraction peaks in the wall peaking cases as well.

Keywords: particle-center-averaging, phase-averaging, bubble number
density, diffusion equation, wall-contact force model, multiphase flow,
Euler-Euler model

1. Introduction1

Dispersed two-phase flows are widely encountered in chemical engineer-2

ing, energy production, oil and gas industries and biotechnology. Exploring3

the flow mechanisms of two-phase flows can ensure safety and improve effi-4

ciency of industrial facilities. Many of these flow mechanisms are still not5

well understood due to their high complexity. Experimental investigations6

on two-phase flows face the difficulty to measure the flow and distribution7

of two phases. Hence, they are usually costly and time-consuming. In com-8

parison, simulations provide a more accessible way to study such flows, but9

they invariably rely on models. Among the simulation methods, the Eu-10

lerian two-fluid model shows advantages for simulating bubbly flows up to11

industrial dimensions with affordable computational cost.12

For bubbly flows, air is considered to be the dispersed phase and water13

is considered to be the continuous phase. In the standard Eulerian two-fluid14

model, the phase-averaging method is used for both phases. Each bubble15

force is a function of the gas volume fraction. In this way, the coherent16

motion of each bubble as a whole is not enforced when the bubble diameter17

is larger than the mesh size. Hence, the gas belonging to a single bubble18

can accumulate in a region smaller than the bubble dimension. However,19

a closure model for a bubble force is typically developed by tracking the20

trajectories of the bubbles’ centers of mass and assuming that a force acts21

on these locations (Hosokawa et al., 2002; Tomiyama et al., 2002; Ziegenhein22

et al., 2018). Therefore, an inconsistency exists between the development23

and the usage of closure models for bubble forces in the standard Euler-24

Euler model. Consequently, over-prediction of gas volume fraction peaks can25

appear in the pipe center or near the wall if the bubble diameter is larger26

than the mesh size (Lehnigk, 2021; Tomiyama et al., 2003).27

Applying the particle-center-averaging method (PCAM) has the potential28

to recover the consistency of the forces in the Euler-Euler model and to form29

a comprehensive theoretical basis. When using PCAM, bubbles are regarded30
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as mass points and a bubble number density is introduced into the solution.31

In this way, the forces act on the bubbles’ centers of mass. Zhang and Pros-32

peretti developed a framework for the Euler-Euler model based on PCAM33

and proposed closure models for the dilute limit by theoretical analysis and34

direct numerical simulations (Prosperetti, 1998; Zhang and Prosperetti, 1994,35

1995, 1997). However, the closure models they developed are for inviscid flow36

or for rigid interfaces, which cannot be generalized for numerical simulations37

of bubbly flows. Besides, the calculation of the particle volume fraction from38

the particle number density in case the particle diameter is larger than the39

mesh size was not considered. In terms of applications, PCAM was used in40

the simulation of a wall-bounded bubbly flow by Moraga et al. (2006). How-41

ever, only a one-way coupling of the phases was considered, i.e., the influence42

of the disperse phase on the flow of the continuous phase was neglected. To43

recover the consistency of the Euler-Euler model, Tomiyama et al. (2003)44

proposed to introduce the bubble number density into the disperse phase45

continuity equation. However, the turbulent dispersion force in the disperse46

phase momentum equation is still functions of gas volume fraction, which47

means that the inconsistencies between the development and the usage of48

force model still exist. In contrast, Lucas et al. (2001, 2007) introduced a49

bubble number density in the momentum equation so that bubble forces act50

on the bubbles’ centers of mass and the gas volume fraction is obtained from51

the convolution of the center-of-mass location and the bubble dimension.52

However, the solver developed by them is only a one-dimensional solver. A53

three-dimensional solver is needed to study bubbly flows comprehensively,54

but it has not been developed so far.55

For a PCAM based Euler-Euler model, two different methods are re-56

quired to average the solution variables for the disperse and the continu-57

ous phases, namely particle-center-averaging and phase-averaging method,58

respectively. Hence, a way to relate the particle-center-averaged and the59

phase-averaged quantities is needed. The interphase coupling methods used60

in Euler-Lagrange model can be borrowed to deal with this issue. In bubbly61

flow simulations with an Euler-Lagrange method, a convolution method with62

a kernel function is used to transfer Lagrangian quantities to the Eulerian63

fields and vice versa (Bokkers et al., 2006; Darmana et al., 2006; Lau et al.,64

2014, 2011). The kernel function represents the influence of the Lagrangian65

quantities defined at the bubbles’ centers of mass on the Eulerian quantities66

in a certain influence region around the bubbles’ centers of mass and vice67

versa (Lau et al., 2014). However, it is complicated to deal with the kernel68
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function near curved boundaries or corners of a domain where the boundaries69

meet non-orthogonally, and to implement it into a code using unstructured70

meshes and parallel computation (Sun and Xiao, 2015b). A diffusion-based71

method proposed by Sun and Xiao (2015b) is theoretically equivalent to a72

convolution method with a Gaussian kernel function and it can give simi-73

lar results by selecting a suitable diffusion pseudo-time. More importantly,74

this method is easy to implement for codes using structured or unstructured75

meshes and serial or parallel processing. Hence, it is used for the coupling of76

the quantities between the particle-center-averaged and the phase-averaged77

fields in this study.78

In terms of closure models, a baseline model was established at Helmholtz-79

Zentrum Dresden-Rossendorf (HZDR) for bubbly flows simulations (Rzehak80

and Krepper, 2015). The baseline model is a set of closure relations for81

the bubble forces, bubble-induced turbulence and bubble coalescence and82

breakup. It was validated on a large number of experiments (Fleck and83

Rzehak, 2019; Hänsch et al., 2021; Krepper et al., 2018; Liao et al., 2016,84

2019, 2018, 2020; Rzehak et al., 2017a; Rzehak and Krepper, 2015; Rzehak85

et al., 2017b; Shi and Rzehak, 2018; Zidouni et al., 2015; Ziegenhein et al.,86

2013). The validation results show that the baseline model can reproduce87

the experimental data and provide reasonable simulation results. Therefore,88

in this study, the baseline model is used as the closure in the bubbly flow89

simulations. One of the previously used validation databases, namely the90

MTLoop experiment, will also be used here (Lucas et al., 2005).91

In this work, an approach to simulate bubbly flows using PCAM is es-92

tablished by combining the Euler-Euler model based on PCAM, the diffusion-93

based method relating the the particle-center-averaged and the phase-averaged94

quantities and the HZDR baseline model for the closure models. In this ap-95

proach, a physically motivated model for the wall-contact force is introduced96

to avoid the bubbles’ centers of mass coming arbitrarily close to the wall. For97

this purpose, the wall-contact force model of Lucas et al. (2007) is adapted98

for oblate ellipsoidal bubbles. The entire approach is implemented based on99

the solver reactingTwophaseEulerFoam in the OpenFOAM Foundation re-100

lease (OpenFOAM Foundation, 2020). To evaluate its merits and compare101

it to the standard approach, a simplified two-dimensional test setup is used102

first. Laminar and turbulent flows are considered separately. A compari-103

son between predictions and experimental measurements is then made for104

selected tests from the MTLoop experimental database.105
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2. Theory and solution procedure of particle-center-averaged Euler-106

Euler model107

The theory of the applied Euler-Euler model, the averaging methods as108

well as the continuity and momentum equations from Prosperetti (1998)109

are summarized in this section. The way to relate the phase-averaged and110

the particle-center-averaged quantities will be introduced. Besides, the dif-111

fusion pseudo-time optimization and the proposed correction terms will be112

explained. Finally, the solution procedure will be briefly mentioned. In113

this study, both phases are taken as incompressible and a fixed bubble size114

(monodisperse) is assumed.115

2.1. Phase-averaging and particle-center-averaging method116

The phase-averaging is used to average the solution variables for the con-
tinuous phase. The phase-averaging of a quantity f of phase k is defined by

fk =
1

αk

∫
CN

fkXkP (N, t) dCN , (1)

where Xk is the phase indicator function. It is 1 where the phase k exists,
otherwise it is 0. In Eq. (1), CN describes the set of all possible dynamic
states of the system containing N bubbles and P (N, t) is the probability
density function of a dynamic state at time t. Note, the indistinguishable
particle probability is used here, so∫

CN

P (N, t) dCN = 1. (2)

Hence, N ! does not appear in the definition of the averaged quantities. The
volume fraction of phase k is defined by

αk =

∫
CN

XkP (N, t) dCN . (3)

In this study, “particle” and “bubble” are used interchangeably since the
formalism is the same, but only applications for bubbly flows are considered.
PCAM is used to average the solution variables for the disperse phase. It is
suitable to average quantities that concern the particle as a whole, like the
center-of-mass velocity. Therefore, the delta function δ indicating the loca-
tion of the particle center is involved in the average (Biesheuvel and Gorissen,
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1990; Moraga et al., 2006; Prosperetti, 1998; Zhang and Prosperetti, 1994).
The particle-center-averaging of a quantity f is defined by

〈f〉 (x , t) =
1

n

∫
CN

[
N∑
i=1

δ
(
x − y i

)
f i (N, t)

]
P (N, t) dCN , (4)

where x is the spatial location, f i is the value of the quantity f for bubble
i (i = 1, · · · , N), and y i is the location of its center. The bubble number
density is defined by

n =

∫
P (x ,u , t) du . (5)

Here P (x ,u , t) is the one-bubble probability density function, which is re-
lated to P (N, t) as

P (x ,u , t) =

∫
P (N, t) dCN−1. (6)

The product of n and dx represents the probability of finding a bubble center
in the vicinity of the location x at time t.∫

ndx = N. (7)

This relation justifies that n is the bubble number density.117

2.2. Continuity and momentum equations118

The continuity equation for the continuous phase is the same as in the
standard Euler-Euler model (Drew and Passman, 1998)

∂αcρc
∂t

+∇ · (αcρcu c) = 0, (8)

where ρ is the density and u is the velocity. Here and in the following, a
subscript c denotes a quantity for the continuous phase while a subscript
d denotes a quantity for the disperse phase. For the disperse phase, the
continuity equation becomes a transport equation for the bubble number
density

∂nρd
∂t

+∇ · (nρd 〈ud〉) = 0. (9)
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The momentum equation for the continuous phase is

∂αcρcu c

∂t
+∇ · (αcρc u c u c)

= −αc∇pc + αc∇ · Sc +∇ ·
(
αcTc

)
+ f c + αcρcg ,

(10)

where p, S, T, f and g are pressure, viscous stress tensor, Reynolds stress ten-
sor, interfacial force per unit volume and acceleration of gravity, respectively.
The momentum equation for the disperse phase is derived by averaging the
equation of motion for bubbles (Prosperetti, 1998; Zhang and Prosperetti,
1994). The momentum equation is

∂βdρd 〈ud〉
∂t

+∇ · (βdρd 〈ud〉 〈ud〉)

= −βd∇pc + βd∇ · 〈Sc〉+∇ · (βd 〈Td〉) + 〈f d〉+ βdρdg ,
(11)

where βd is gas volume fraction projecting all the bubble volume to the bubble
centers. It is calculated by

βd = nVd, (12)

where Vd is the bubble volume.119

It should be mentioned that some assumptions and simplifications have120

been used to derive Eqs. (10) and (11) from the original momentum equations121

in Prosperetti (1998). First, the collision stress due to direct bubble-bubble122

interactions is not considered in Eq. (11). Second, the terms containing123

A[σc] in the momentum equations in Prosperetti (1998) are regarded as the124

interfacial momentum interactions and replaced by f c and 〈f d〉. At last, the125

surface stress term L[σc] in the momentum equation of the continuous phase126

in Prosperetti (1998) originates from the non-uniform distribution of pressure127

force on the surface of a bubble or a particle (Zhang and Prosperetti, 1994).128

It is neglected since no closure model for it is known in a bubbly flow.129

Compared to the momentum equations and the way to derive the equa-130

tions in the standard Euler-Euler model (Drew and Passman, 1998), the131

differences lie in:132

1. The phase volume fraction in the viscous stress term of Eq. (10) is out-133

side of the divergence since the part of the viscous stress term related134

to the gradient of the phase volume fraction is cancelled by the inter-135

facial contributions, which is similar to the pressure term (Prosperetti136

and Jones, 1984).137
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2. Equation (11) is derived by averaging the equation of motion for bub-138

bles, while the equation in the standard Euler-Euler model is derived139

by averaging the local instantaneous momentum equation and by using140

the phase indicator function of the disperse phase.141

3. The physical meaning of the momentum equation for the disperse phase142

in the Euler-Euler model based on PCAM is different from that in the143

standard Euler-Euler model. Equation (11) displays the momentum144

balance of gas, which belongs to bubbles having their centers located145

inside the control volume. This gas may only be partially contained146

within the control volume. In the standard Euler-Euler model, the147

equation refers to the momentum balance of all gas contained inside148

the control volume. This gas may belong partially or even completely149

to bubbles with centers outside of the control volume. Hence, Eq. (11)150

is related to the bubble number density, while in the standard Euler-151

Euler model, the momentum equation of the disperse phase is related152

to the volume fraction of the disperse phase.153

4. Equation (11) explicitly shows the response of bubbles to the pressure154

and the viscous stress tensor of the continuous phase. Hence, no addi-155

tional closure model for the viscous stress tensor of the disperse phase is156

required. In the standard Euler-Euler model, the viscous stress tensor157

of the disperse phase appears and a closure model for it is needed.158

2.3. Closure models159

The selected closure models for the interfacial forces according to the
HZDR baseline model, which is based on the standard Euler-Euler model,
are listed in Table 1. In the standard Euler-Euler model, the interfacial

Table 1: HZDR baseline model for monodisperse bubbly flows.

Force and turbulence Selected model

Drag force Ishii and Zuber (1979)
(Shear-) lift force Tomiyama et al. (2002) with cosine wall damping
Turbulent dispersion force Burns et al. (2004)
Wall (-lift) force Hosokawa et al. (2002)
Virtual mass force Constant coefficient, CVM = 0.5
Turbulence k − ω SST
Bubble-induced turbulence Ma et al. (2017)
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forces are functions of the gas volume fraction. In the Euler-Euler model
based on PCAM, the interfacial forces for the disperse phase are changed
to be functions of the bubble number density. The necessary conversion is
achieved by

f (n) =
nVd
αd

f (αd) , (13)

where f (n) and f (αd) are the force per unit volume as a function of the160

bubble number density and the gas volume fraction, respectively. For the161

turbulent dispersion force model, an additional change is needed for the term162

∇αd/αd, which should be changed to ∇βd/βd based on the derivation proce-163

dure in Burns et al. (2004, see appendix).164

Moreover, for the PCAM based Euler-Euler model, an additional wall-
contact force has to be introduced to prevent the bubbles’ centers of mass
from coming nonphysically close to the wall. For this purpose, the wall-
contact force model proposed by Lucas et al. (2007) is adopted for bubbles
with an oblate ellipsoidal shape. The resulting wall-contact force f contactd

reads

f contactd = −πdBσn

{
− 1

L̃2
+

3L̃

2G

[(
4
√
G

3
+

L̃3

√
G

)
arctanh

√
G− 1

]}
, (14)

where L̃ = 2L/dB and G = 1 − L̃3. In these equations, dB is the bubble165

diameter, σ is the surface tension coefficient and L is the distance between166

the bubble’s center-of-mass and the wall.167

For turbulent flows, the continuous phase turbulence is simulated by the168

turbulence models in Table 1, while the flow of the disperse phase is assumed169

to be laminar since ρd � ρc.170

2.4. Coupling between phase-averaged and particle-center-averaged quantities171

As discussed above, phase-averaging and particle-center-averaging are172

used to average the solution variables for the continuous phase and the173

disperse phase, respectively. When the bubble diameter is smaller than174

the mesh size, the difference between phase-averaged and particle-center-175

averaged quantities is not significant. In this condition, it is reasonable176

to assume that a phase-averaged quantity approximately equals the corre-177

sponding particle-center-averaged quantity (i.e. αd ≈ βd). However, when178

the bubble diameter is larger than the mesh size, the difference between the179
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averaging methods becomes significant, and this assumption is not appropri-180

ate. Therefore, a comprehensive way is needed to couple phase-averaged and181

particle-center-averaged quantities, which can be used in both conditions. In182

principle this way could be established by a convolution using a kernel func-183

tion that represents the spatial extent of a single bubble (Lyu et al., 2020).184

However, implementing such a method efficiently in a numerical simulation185

using unstructured grids is difficult. Therefore, a diffusion-based method186

is used here to relate phase-averaged and particle-center-averaged quanti-187

ties. The bubble influence region, over which the diffusion takes place, may188

be larger than the actual bubble volume to comprise also effects of bubble189

shape and path oscillations.190

To calculate a phase-averaged quantity from the corresponding particle-
center-averaged quantity, the quantity in the bubble’s center-of-mass should
be distributed. For example, to calculate the gas volume fraction from the
bubble number density, the bubble volume is distributed around its center-
of-mass by solving the following diffusion equation

∂αd
∂τ
−∇ · (Cdiff∇αd) = 0, (15)

with an initial condition of αd = nVd. In this process, the gas volume is191

conserved. In the equation, τ is the diffusion pseudo-time and Cdiff is the192

diffusion coefficient, both determining the size of the bubble influence region.193

Note, this diffusion process takes place at every time step of the simulation194

such that τ is unrelated to the physical time, and, hence, referred to as a195

pseudo-time. Without loss of generality, Cdiff is set to be 1 m2 s−1 for all dif-196

fusion processes in the present study, while an optimized value is determined197

for τ in section 2.5. To solve Eq. (15), a Neumann boundary condition with198

derivative equal to zero is used for all boundaries.199

Similarly, to calculate a phase-averaged gas velocity ud, the bubble mo-
mentum is distributed about its center-of-mass by the following diffusion
equation

∂αdud

∂τ
−∇ · (Cdiff∇(αdud)) = 0, (16)

with an initial condition of αdud = n 〈ud〉Vd. Other settings are as described200

above.201

Besides, the forces acting on the bubble centers are distributed to the
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bubble influence region by the following diffusion equation

∂f d
∂τ
−∇ ·

(
Cdiff∇f d

)
= 0, (17)

with an initial condition of f d = 〈f d〉. The total force does not change in this
process. Finally, the forces acting on the continuous phase can be calculated
by

f c = −f d. (18)

On the contrary, the continuous phase velocity at the bubbles’ centers of
mass 〈u c〉 can be calculated from the corresponding phase-averaged contin-
uous phase velocity u c by the following weighted average

〈u c〉 (x , τ) =

∫ +∞

−∞
u c (x0 , 0)

1

(4πCdiffτ)
3
2

exp

{
−(x − x0 )2

4Cdiffτ

}
dx0 , (19)

which is the solution of

∂ 〈u c〉
∂τ

−∇ · (Cdiff∇〈u c〉) = 0, (20)

with an initial condition of 〈u c〉 (x 0, 0) = u c (x 0, 0), where x0 is the spatial202

coordinate vector.203

2.5. Diffusion pseudo-time optimization204

A key parameter in the conversions using the diffusion-based method is205

the diffusion pseudo-time τ . The diffusion pseudo-time is independent of the206

physical time. It affects the size of the bubble influence region.207

The size of the bubble influence region in the convolution or the diffusion-208

based method is still an open question. Deen et al. (2004) and Darmana209

et al. (2006) set this size to be 3 times the bubble mean diameter. However,210

Bokkers et al. (2006) and Lau et al. (2011) set it to be 6 and 2 times the bubble211

mean diameter, respectively. Besides, Sun and Xiao (2015a) argued that this212

size should approximately equal the size of the wake of the particles. Since no213

agreement on the value for the bubble influence region is found in literature,214

this subsection aims to optimize the diffusion pseudo-time by minimizing the215

difference between expected and numerically computed gas volume fractions216

in a simplified one-dimensional case.217
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(a) Expected gas volume fraction. (b) Solved gas volume fraction.

Figure 1: Gas volume fraction for the one-dimensional case

In the condition that a layer of equally sized and spherical bubbles slides
on a wall, Lubchenko et al. (2018) derived a fixed profile for the gas volume
fraction near the wall in the direction perpendicular to the wall. This profile
can be used as the expected gas volume fraction in a one-dimensional case
where a stream of spherical bubbles is injected at location x = xc. Hence,
the expected gas volume fraction reads

αexp
d (x) =

{
αmax − 4αmax (x− xc)2 /d2

B, |x− xc| ≤ dB
0, |x− xc| > dB

, (21)

where x is the spatial coordinate and αmax is the maximum gas volume218

fraction.219

The gas volume fraction is obtained by solving Eq. (15) in one dimension
(Haberman, 2012)

αd (x, τ) =

∫ +∞

−∞
n (x0, 0)Vd

1√
4πCdiffτ

exp

{
−(x− x0)2

4Cdiffτ

}
dx0. (22)

In the one-dimensional case concerned here, the initial bubble number density
is concentrated only in one mesh cell. Consequently, the solved gas volume
fraction can be discretized as

αsol
d (x, τ) ≈ n (xc, 0)Vd

1√
4πCdiffτ

exp

{
−(x− xc)2

4Cdiffτ

}
∆x, (23)

where ∆x is the size of the grid cell containing the bubble centers.220
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In the comparison of the expected and the solved gas volume fractions,
the gas volume is kept the same by setting

n (xc, 0) =

∑M
i=1 α

exp
d (xi)Vi
VdVc

, (24)

where M is the number of cells covered by the bubbles (Fig. 1(a)), while Vi221

and Vc are the volumes of the grid cell i and c, respectively.222

The optimized diffusion pseudo-time is the time for the error to reach its
minimum value

E (τ) =
M∑
i=1

[
αexp
d (xi, τ)− αsol

d (xi, τ)
]2
, (25)

where xi ∈ (xc ± 0.5 dB).223

In the last equation, the discretised form of αsol
d is used. The influence

of the parameter M , which is used in the discretisation on the optimized
diffusion pseudo-time, should be analyzed. Since the optimized diffusion
pseudo-time τopt will depend on Cdiff as well as dB, a dimensionless optimized
diffusion pseudo-time

τ̃opt =
τoptCdiff

d2
B

(26)

will be used in the analysis. The result is shown in Fig. 2.224

Figure 2: Mesh sensitivity analysis for the dimensionless optimized diffusion pseudo-time.
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Figure 3: Expected and optimally solved gas volume fraction for the one-dimensional case.

As can be seen, τ̃opt is almost a constant when M is larger than 30.225

As a result, τ̃opt = 0.03356 is used in the following simulations. With the226

optimized diffusion pseudo-time, the distributions of the expected and the227

solved gas volume fractions for the one-dimensional case can be seen in Fig. 3.228

For the solved gas volume fraction, 94.72% of the gas volume is contained229

within xc ± 0.5 dB.230

2.6. Correction terms for drag and virtual mass force of continuous phase231

In the OpenFOAM multiphase flow solvers for the Euler-Euler model, the
drag and virtual mass force are treated semi-implicitly to make the solution
stable. After changing the forces to act on the bubble centers based on Eq.
(13) and using the particle-center-averaged fields, the drag force and the
virtual mass force for the disperse phase are〈

f drag
d

〉
= − 3

4dB
CDρcβd|〈ud〉 − 〈u c〉| ([〈ud〉]− 〈u c〉) (27)

and 〈
f VM
d

〉
= −CVMρcβd

(
Dd [〈ud〉]

Dt
− Dc 〈u c〉

Dt

)
, (28)

respectively, where CD and CVM are the coefficients and ρ is the density.232

The quantities within the square brackets are the quantities remaining to be233

solved. They are treated implicitly. Note, the other term in Eq. (27) involv-234

ing 〈ud〉 is treated explicitly, which means the old value from the last time or235
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iteration step will be used. The forces
〈
f drag
d

〉
and

〈
f VM
d

〉
can be calculated236

directly using the particle-center-averaged fields, and hence, appear directly237

on the right hand side of the disperse phase momentum equation.238

To keep the forces consistent, these forces, which act on the bubbles’ cen-
ters of mass are converted to phase-averaged forces acting on the continuous
phase using Eqs. (17) and (18). However, this conversion requires an ex-
plicit implementation, which will cause numerical stability problems. As a
solution, besides the conversion, a correction term

f drag, correction
c = − 3

4dB
CDρcβd|〈ud〉 − 〈u c〉| ([u c]− u c) (29)

is added to the drag force of the continuous phase, while a correction term

f VM, correction
c = −CVMρcβd

([
Dcu c

Dt

]
− Dcu c

Dt

)
(30)

is added to the virtual mass force of the continuous phase.239

These correction terms do not exist in theory. However, once the sim-240

ulation has sufficiently converged to a steady state, these terms will be ne-241

glectable since the difference between the current and the old values will be242

neglectable.243

2.7. Solution procedure244

bubble
number
density

prediction

Bubble
volume

diffusion

Volume
fraction

Flux
prediction

Pressure
solution

Flux
correction

Velocity
Turbulence

solution

Figure 4: Solution procedure.
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For the numerical solution, the underlying equations are discretised by245

the finite volume method. For the conservation equations in section 2.2, a246

first order Euler implicit scheme is used for the temporal discretisation and247

a flux-limiter is used for the discretisation of the convection term. For the248

pressure and velocity coupling, the PISO (Pressure Implicit with Splitting249

of Operator) algorithm is used. Besides, it is assumed that particle-center-250

averaged and phase-averaged pressure is the same. Moreover, for the diffusion251

equations in section 2.4, which are used to couple the phase-averaged and252

particle-center-averaged quantities, an Euler implicit scheme is used in the253

temporal discretisation and a Gauss linear scheme is used for the discretisa-254

tion of the laplacian term. The solution procedure is shown in Fig. 4.255

3. Basic verification of the improvement of Euler-Euler model based256

on the particle-center-averaging method257

In this section, a simplified two-dimensional test case is used to reveal258

the numerical problems and nonphysical results of the standard Euler-Euler259

model caused by the inconsistency in the bubble force models. Besides, the260

improvement by changing the bubble forces to act on the bubbles’ centers of261

mass by PCAM is shown.262

3.1. Geometry and simulation setups263

A two-dimensional test case similar to that used in Tomiyama et al. (2003)264

is employed. The domain and boundary settings are shown in Fig. 5 (a).265

It is a rectangle with a size of 0.03 m × 0.5 m. A stream of air bubbles is266

injected at x = 0 and y = 0 into the domain that contains only water at267

the beginning. The inlet liquid velocity is a parabolic profile (Fig. 5 (b))268

to introduce a shear flow field, while the inlet gas velocity is uniform with a269

value of 0.1 m s−1. Besides, the inlet gas volume fraction distribution for the270

simulations with the standard Euler-Euler model is shown in Fig. 5 (c). In271

this profile, the lateral length over which the gas volume fraction is non-zero272

equals the bubble diameter.273

For the PCAM Euler-Euler simulations, bubble number density at the
inlet is non-zero only in the center cell of the mesh. To keep the inlet gas
flow rate the same as in the standard Euler-Euler simulation, the inlet bubble
number density is calculated by

n =
1

Vd

M∑
j=1

αd,j, (31)
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where αd,j is the gas volume fraction in mesh cell j, M is the number of274

mesh cells in the first layer near the inlet containing non-zero gas volume275

fraction, and the mesh aspect ratio is kept at a value of 1 (i.e. grid spacing276

∆ = ∆x = ∆y).277

(a) Geometry and boundaries. (b) Inlet liquid velocity.

(c) Inlet gas volume fraction

Figure 5: Geometry and boundary conditions
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Table 2: Boundary settings.

Variable Inlet Wall Outlet

αd/αc fixedValue zeroGradient zeroGradient
n/βd fixedValue fixedValue (0) zeroGradient
Ud fixedValue slip pressureInletOutletVelocity
Uc fixedValue noSlip pressureInletOutletVelocity
prgh fixedFluxPressure fixedFluxPressure prghPressure
p calculated calculated calculated

Table 3: Physical properties of the fluids (µ: dynamic viscosity).

ρc [kg m−3] ρd [kg m−3] µc [kg m−1 s−1] µd [kg m−1 s−1]

995.6 1.165 7.97e-4 1.86e-05

The detailed boundary settings are listed in Table 2. Note, OpenFOAM
solver works with a pseudo pressure prgh instead of p to treat the machine
precision issues. Their relation is

p = prgh + ρmgh, (32)

where ρm is the mixture density. It is calculated by

ρm = αdρd + αcρc. (33)

In all simulations, the Courant number is 0.002. Besides, the temperature of278

air and water is 25 °C and the pressure is 101325 Pa. The physical properties279

of the fluids are shown in Table 3.280

3.2. Mesh sensitivity analysis281

A mesh sensitivity is carried out for the standard Euler-Euler model and282

the PCAM Euler-Euler simulation. In this analysis, the ratio between the283

bubble diameter and the size of the mesh cells ranges from 2.5 to 20. Since284

the simulations of the standard Euler-Euler model do not reach a steady285

state, the results for the gas volume fraction αd are averaged between 5 s286

and 20 s of simulation time at an axial height of y = 0.4 m. Laminar and287

turbulent flow cases are considered separately.288
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(a) Standard Euler-Euler model. (b) Euler-Euler model based on PCAM.

Figure 6: Mesh sensitivity analysis for the laminar flow case (∆: grid spacing)

For a laminar flow, the results of the mesh sensitivity analysis are shown289

in Fig. 6. For the standard Euler-Euler model, the peak of the gas volume290

fraction increases continuously with decreasing mesh size. This results from291

the fact that the lift force acts on the distributed gas and drives it to the292

mesh cells in the channel center. The resulting concentration of gas in the293

channel center becomes higher when the mesh is refined and mesh indepen-294

dent results cannot be found. In contrast, in the results of the Euler-Euler295

simulation based on PCAM, the gas volume fraction distributions are simi-296

lar upon refining the mesh. The reason is that in this method, the bubble297

forces are changed to act on the bubbles’ centers of mass and these cen-298

ters are located at the centreline of the channel, where the shear gradient299

vanishes. Therefore, the PCAM remedies the numerical deficiency in the300

standard Euler-Euler approach and provides a mesh independent solution301

for laminar flow.302

For a turbulent flow, the results of the mesh sensitivity analysis are shown303

in Fig. 7 and show overall similar results as for the laminar flow. In the304

results of the standard Euler-Euler model, the gas volume fraction peak for305

a mesh size of 0.5 mm is slightly lower than the peak in the laminar flow.306

The reason is that the turbulent dispersion force flattens the gas volume307

fraction peak. For other mesh sizes, the gas volume fraction peaks in the308

laminar and the turbulent flow case are almost the same. As a result, the309

phenomenon that the gas volume fraction peak grows with decreasing mesh310

size is still significant. After using PCAM, the gas volume fractions remain311
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(a) Standard Euler-Euler model. (b) Euler-Euler model based on PCAM.

Figure 7: Mesh sensitivity analysis for the turbulent flow case (∆: grid spacing)

similar upon refining the mesh.312

In summary, using PCAM in the Euler-Euler model yields a mesh inde-313

pendent solution, where the standard Euler-Euler model does not. However,314

these test cases are simplified. It is conceivable that mesh independent solu-315

tions may exist also for the standard Euler-Euler model when the turbulent316

dispersion force is strong enough.317

3.3. Axial development of gas volume fraction318

In this subsection, the axial development of the gas volume fractions is319

analyzed. The grid spacing for all simulations in this subsection is 2 mm. At320

the inlet, the lateral region between x = 0.01 and x = 0.02 has non-zero gas321

volume fractions, which is equal to the bubble diameter.322

For a laminar flow, the simulation results are shown in Fig. 8. In the323

results for the standard Euler-Euler model, the gas volume fraction profiles324

are narrow with high peak, which means that gas concentrates in the channel325

center following the flow downstream. Besides, the lateral region covered by326

the gas becomes smaller than the bubble diameter, which is nonphysical.327

This phenomenon is caused again by the lift force, which transports the328

distributed gas to the channel center even though it really belongs to the329

same bubble. In contrast, by using PCAM in the Euler-Euler model, the330

distribution of the gas volume fraction remains almost unchanged after the331

inlet (Fig. 8 (b)). Besides, the width of the region covered by the gas has332

a size close to the bubble diameter. Therefore, the gas volume fractions333

predicted by PCAM are considered to be more reasonable.334
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In turbulent flow, the simulation results are shown in Fig. 9. In the results335

of the standard Euler-Euler model, the gas over-concentration in the channel336

center downstream of the inlet is still significant although it does not change337

anymore. After changing the forces to act on the bubbles’ centers of mass by338

PCAM, the over-concentration of the gas in the channel center disappears339

from the simulation results.340

In conclusion, gas over-concentration can appear in the channel center341

in the standard Euler-Euler model since lift force is a function of the gas342

volume fraction. This gas over-concentration is avoided by changing the343

bubble forces to act on the bubbles’ centers of mass as done by PCAM.344

(a) Standard Euler-Euler model. (b) Euler-Euler model based on PCAM.

Figure 8: Gas volume fraction for laminar flow at different downstream positions

(a) Standard Euler-Euler model. (b) Euler-Euler model based on PCAM.

Figure 9: Gas volume fraction for turbulent flow at different downstream positions
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4. Comparisons of simulation results and experimental data in345

bubbly pipe flows346

4.1. Experimental conditions347

To evaluate PCAM in the Euler-Euler model, the results of the stan-348

dard Euler-Euler model and the Euler-Euler simulations based on PCAM are349

compared with the measurement data from the MTLoop experiment (Lucas350

et al., 2005). The test section in the experiment is a vertical pipe. Its inner351

diameter is 51.2 mm. The temperature of air and water in the experiment352

is 30 °C and the pressure is 101325 Pa. The data used for comparison are353

measured at a distance of 3.03 m from the gas injection. At this level, the354

ratio between the distance from the gas inlet and the pipe diameter is about355

59. Therefore, a fully-developed flow is expected.356

4.2. Simulation setup357

To reduce the computational cost, the geometry in the simulations is a358

wedge with a center angle of 1.0 degree. The axial length of the wedge is359

3.5 m. A wedge boundary condition is used in the circumference direction.360

The numbers of mesh cells in the radial and the axial directions are 50 and361

800, respectively. The mesh spacing is uniform in both directions. At the362

inlet, a uniform profile for the velocity and the phase fraction of each phase is363

used. The values are calculated from the superficial air and water velocities364

by assuming that the relative velocity between the disperse and continuous365

phases is zero at the inlet. The detailed boundary settings are listed in366

Table 2. Besides, the parameters for the selected cases are listed in Table367

4. The selected cases comprise different flow regimes, namely flows with368

wall peaking and center peaking gas volume fraction profiles as well as finely369

dispersed bubbly flows.370

4.3. Comparison of wall peaking cases371

If the gas volume fraction peaks are located near the wall and the bubble372

diameters are larger than the mesh size, the gas volume fraction peaks sim-373

ulated by the standard Euler-Euler model can be over-predicted. In Fig. 10,374

the gas volume fraction peaks of the cases 43, 20, 98, 42 and 109 simulated by375

the standard Euler-Euler model are about 590%, 170%, 170%, 70% and 70%376

higher than the peaks in the experimental data, respectively. The extent of377

over-prediction is influenced by the magnitude of the radial resultant force378
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Table 4: Parameters for the selected MTLoop cases (J : superficial velocity; ∆: radial grid
spacing).

Name Jc [m s−1] Jd [m s−1] αd % dB [mm] dB/∆

19 1.0170 0.0040 0.43 4.697 9.2
20 1.6110 0.0040 0.30 3.610 7.1
30 1.0170 0.0062 0.63 4.962 9.7
35 0.0641 0.0096 3.78 6.619 12.9
41 1.0170 0.0096 0.95 5.114 10.0
42 1.6110 0.0096 0.68 4.151 8.1
43 2.5540 0.0096 0.47 2.918 5.7
47 0.1020 0.0151 5.08 7.442 14.5
48 0.1610 0.0151 4.23 6.486 12.7
52 1.0170 0.0151 1.46 4.951 9.7
58 0.1020 0.0235 8.23 7.154 14.0
66 4.0470 0.0235 0.75 2.631 5.1
88 4.0470 0.0574 1.89 2.997 5.9
98 2.5540 0.0898 3.94 4.273 8.3
109 2.5540 0.1400 5.87 4.642 9.1
110 4.0470 0.1400 4.46 3.455 6.7

(the sum of the radial component of drag, virtual mass, turbulent disper-379

sion and wall force) and the ratio between bubble diameter and radial grid380

spacing. Compared to cases 20 and 42, case 43 has a small ratio between381

bubble diameter and radial grid spacing (Table 4), but the magnitude of the382

radial resultant force is relatively high (Fig. 11). Hence, the over-prediction383

in case 43 is the highest. After employing PCAM in the simulations, theses384

gas volume fraction peaks compared to the experimental data decrease to385

250%, 20%, 70%, 10% and 30%, respectively (Fig. 10). This proves that the386

over-prediction of the gas volume fraction peak near the wall in the results387

of the Euler-Euler model can be alleviated by changing the bubble forces to388

act on the bubbles’ centers of mass as done by PCAM.389

However, not all wall peaking cases show the trend that the gas volume390

fraction peak simulated by using PCAM fits the peak in the experimental391

data better. For the wall peaking cases in Fig. 12, the gas volume fraction392

peaks simulated by PCAM are under-predicted. The under-prediction in393

cases 30, 19, 41 and 52 are about 27%, 25%, 25% and 9% of the peaks394
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in the experimental data, respectively. Nevertheless, the previous analysis395

shows that the standard Euler-Euler can have high gas concentration in the396

peak because of the inconsistency between the development and usage of the397

bubble force models. Therefore, it is possible that the agreement between the398

standard Euler-Euler model results and experimental data in cases 19 and 52399

includes the contribution of this inconsistency. Besides, the under-prediction400

of the gas volume fraction peaks also exist in the results of the standard401

Euler-Euler simulations in cases 30 and 41. Hence, the under-prediction402

may results from the insufficiency in the interfacial force models or errors in403

the experimental data. Furthermore, the gas volume fractions in the near404

wall region where 0.95 < r/R < 1 predicted by both Euler-Euler models405

are under-predicted. In addition, the gas volume fraction peaks in some406

simulation results are located further away from the wall than the locations407

of the peaks in the experimental data. There are two possible reasons for408

these results: The first reason is using the assumption of a monodisperse flow409

in the simulations. If bubbles smaller than the mean diameter slide on the410

wall or flow near the wall, the gas volume fraction peak can be located closer411

to the wall. The second reason is that the spatial resolution of the wire-mesh412

sensors in the experimental measurement is limited. As a result, they can413

give high gas volume fraction measurement in the measurement cell nearest414

to the wall if there are a lot of small bubbles flowing near the wall.415

4.4. Comparison of cases with center peaks416

If the gas volume fraction peaks are located in the pipe center and the417

bubble diameters are larger than the mesh size, an over-prediction of the gas418

volume fraction peaks can appear in the pipe center for standard Euler-Euler419

simulations. In Fig. 13, the over-prediction of the gas volume fraction peaks420

for standard Euler-Euler simulations is significant. Nevertheless, no improve-421

ment is found in the results of Euler-Euler model based on PCAM. Figure 14422

shows that the turbulent intensity in these center peaking cases is higher423

than that in the wall peaking cases. A possible explaination is that the over-424

prediction of the gas volume fractions, which is caused by the inconsistency425

in the interfacial forces has been smoothed by the high turbulent dispersion.426

The over-prediction by both Euler-Euler models for the cases in Fig. 13 may427

result from using monodisperse assumption in the simulations, insufficiencies428

in the interfacial force models and errors in the experimental data. Besides,429

similar to the results in the wall peaking cases, the under-prediction of the430

gas volume fraction exists near the wall (0.95 < r/R < 1).431
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4.5. Comparison of cases in finely dispersed flow432

In a pipe flow, a finely disperse flow regime can appear when the liquid433

superficial velocity is relatively high. The over-prediction of the gas volume434

fraction peaks in the results of the standard Euler-Euler model is significant435

(Fig. 15). The reason is that the magnitudes of the lift and the wall force436

can be as high as 103 N m−3 in the near-wall region (Fig. 16) since the liquid437

velocity gradient is high and the bubble diameter is small. For case 66, the438

gas volume fraction peak is located on the wall. This is nonphysical since the439

smallest distance between the peak of the gas volume fraction and the wall440

should be about one bubble radius in pipe flow if the bubble deformation is441

ignored (Lubchenko et al., 2018).442

After employing PCAM, the over-prediction is alleviated (Fig. 15). Fur-443

thermore, combining PCAM with the wall-contact force avoids the gas vol-444

ume fraction peak being located on the wall. Note, if the wall-contact force445

is a function of the gas volume fraction, it can drive too much gas away from446

the wall. That is the reason why it is not suggested to use it in the standard447

Euler-Euler model. Nevertheless, no matter which Euler-Euler model is used,448

the trends of the simulation results do not agree well with the trends of the449

experimental data even if PCAM is used. The reason can be insufficiencies450

in the HZDR baseline model due to some unknown effects in finely dispersed451

flow (Lucas et al., 2020).452
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(a) Case 20. (b) Case 42.

(c) Case 43. (d) Case 64.

(e) Case 98. (f) Case 109.

Figure 10: Comparison of the gas volume fraction between standard Euler-Euler (E-E)
and Euler-Euler based on PCAM (r: radial location; R: pipe radius).
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Figure 11: Radial resultant force for continuous phase in standard Euler-Euler simulations.

(a) Case 19. (b) Case 30.

(c) Case 41. (d) Case 52.

Figure 12: Gas volume fraction for wall peaking cases with under-prediction.
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(a) Case 35. (b) Case 47.

(c) Case 48. (d) Case 58.

Figure 13: Gas volume fraction for center peaking cases.

Figure 14: Turbulent intensity.
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(a) Case 66. (b) Case 110.

Figure 15: Gas volume fraction for finely disperse cases.

(a) Case 66. (b) Case 110.

Figure 16: Radial force component in disperse phase for finely dispersed cases (Drag: drag
force; VM: virtual mass force; Lift: lift force; Wall: wall force; TD: turbulent dispersion
force).
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5. Summary and Conclusions453

In the present study, a particle-center-averaging method is employed to454

recover the consistency of the interfacial forces in the Euler-Euler model. The455

results of a simplified two-dimensional case reveal that the inconsistency of456

the interfacial forces in the standard Euler-Euler model can cause the over-457

prediction of the gas volume fraction peaks in the channel center. Besides,458

a mesh independent solutions may not exist. The results show the potential459

of using the particle-center-averaging method to remedy these issues.460

In the present bubbly pipe flows, when the ratio of bubble diameter and461

mesh radial spacing is between 5.1 and 14.5, the over-prediction of the gas462

volume fraction peak exists in a near-wall region or a pipe center for the463

standard Euler-Euler model. Using the particle-center-averaging method in464

the Euler-Euler model shows the ability to alleviate the over-prediction of the465

gas volume fraction peaks for some wall peaking and finely disperse cases.466

Moreover, it can also avoid the gas volume fraction peak being nonphysically467

located on the wall by introducing a wall-contact force.468

Nevertheless, no improvement in the prediction of the gas volume frac-469

tion in the center peaking cases with the particle-center-averaging method470

is found. A possible explanation is the over-prediction of the gas volume471

fraction caused by the inconsistency of interfacial forces has been smoothed472

by the high turbulent dispersion. Besides, in majority of the simulations,473

some differences still exist between the measured and the simulated gas vol-474

ume fractions although the particle-center-averaging method is used. The475

reasons may come from several aspects: First, some open questions still exist476

in the HZDR baseline model. Second, monodisperse simulations may not477

reproduce the flow phenomena in the experiments well. At last, some errors478

may exist in the experimental data due to the limited spatial resolution of479

the wire-mesh sensors and the challenges in measuring and discriminating480

the two phases.481

In further studies, using more than one bubble velocity groups is needed.482

Besides, bubble coalescence and breakup are remained to be considered.483
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7. Nomenclature488

CN a set of all possible dynamic states -
Cdiff diffusion coefficient m2 s−1

CD drag coefficient -
CVM virtual mass coefficient -
d diameter m
E error -
f force per unit volume N m−3

g acceleration of gravity m s−2

J superficial velocity m s−1

L distance between bubble center and wall m
M number of mesh cells covered by a bubble -
n number density of bubble centers m−3

N the number of bubbles in the system -
P (N ; t) probability density function -
P (x ,u , t) one-bubble probability density function m−4 s
p pressure N m−2

r radial coordinate m
R pipe radius m
S viscous stress tensor N m−2

T Reynold stress tensor N m−2

t time s
u velocity vector m s−1

Vd bubble volume m3

Xk phase indicator function for phase k -
x, y, z spatial coordinates m
x , x0 spatial coordinate vector m
xc, y bubble center location m
α phase volume fraction -

βd
gas volume fraction projecting
all bubble volume to bubble centers

-

δ(x) Dirac delta function -
µ dynamic viscosity kg m−1 s−1

ρ density kg m−3

τ diffusion pseudo-time s
σ surface tension coefficient N m−1
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B bubble
c continuous
d disperse
k phase index
m mixture
exp expected
max maximum
opt optimized
sol solved
VM virtual mass force
· phase-average
< · > particle-center-average
·̃ dimensionless

Appendix489

In this appendix, the derivation of turbulent dispersion force for the Euler-490

Euler model based on PCAM will be introduced. This derivation procedure491

here is similar to the procedure in Burns et al. (2004) which is used to derive492

the turbulent dispersion force for the standard Euler-Euler model.493

Relations between time average and Favre average494

For incompressible flow, the Favre average of a particle-center-averaged
variable 〈φd〉 is defined by

〈φd〉
F

=
n 〈φd〉

t

nt
, (1)

where the tilde denotes Favre average, while the overbar and the index t
represent time average. Substituting

n 〈φd〉
t

= nt〈φd〉
t
+ n′〈φd〉′

t
(2)

into Eq. (1), we obtain

〈φd〉
t

= 〈φd〉
F
− n′〈φd〉′

t

nt
. (3)

32



A single dash (′) here denotes the fluctuating quantity relative to the time-
averaged quantity. Replacing 〈φd〉 in the last equation with 〈ud〉, we obtain

〈ud〉
t

= 〈ud〉
F
− n′〈ud〉′

t

nt
. (4)

For phase-averaged velocity of the continuous phase u c, the relation between
time-averaged and Favre-averaged velocities is (Burns et al., 2004)

u c
t

= u c
F − αc′u c

′t

αc
t . (5)

Derivation of turbulent dispersion force for the disperse phase495

The drag force for the disperse phase for the Euler-Euler model based on
PCAM is 〈

f drag
d

〉
= −Dcd, pAcd (〈ud〉 − u c) , (6)

where

Dcd,p =
1

8
CDρc |〈ud〉 − u c| , (7)

and
Acd = nπd2

B. (8)

Note, the phase-averaged velocity of the continuous phase is used in the drag
force here to keep the original definition of this quantity. It is assumed that
Dcd, p does not change with time. Applying time average to Eq.(6) yields〈

f drag
d

〉t
= −Dcd,p

[
Acd

t
(
〈ud〉

t
− u c

t
)

+ Acd
′ (〈ud〉′ − u c

′)t] . (9)

Substituting Eqs. (4) and (5) into Eq. (9), we obtain496

〈
f drag
d

〉t
=−Dcd,pAcd

t

[(
〈ud〉

F
− n′〈ud〉′

t

nt

)
−

(
u c

F − αc′u c
′t

αc
t

)]
−Dcd,pAcd

′ (〈ud〉′ − u c
′)t (10)

The last equation can be simplified to〈
f drag
d

〉t
= −Dcd, pAcd

t
(
〈ud〉

F
− u c

F
)

+ f TD
d , (11)
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where

f TD
d = Dcd,pAcd

t

(
n′〈ud〉′

t

nt
− αc′u c

′t

αc
t

)
−Dcd, pAcd

′ (〈ud〉′ − u c
′)t. (12)

Substituting

Ccd, p
t

= Dcd,pAcd
t

(13)

into Eq. (12) results in

f TD
d = Ccd, p

t

(
n′〈ud〉′

t

nt
− αc′u c

′t

αc
t

)
− Ccd, p

tAcd
′ (〈ud〉′ − u c

′)t
Acd

t . (14)

Bubble diameter is a constant. Therefore

Acd
′ = n′πd2

B, (15)

and
Acd

t
= ntπd2

B. (16)

Based on Eqs. (15) and (16), we have

Acd
′ (〈ud〉′ − u c

′)t
Acd

t =
n′
(
〈ud〉′ − u c

′)t
nt

. (17)

Substituting Eq. (17) into Eq. (14) and simplifying it, we obtain

f TD
d = Ccd, p

t

(
n′u c

′t

nt
− α′cu c

′t

αc
t

)
. (18)

Using the eddy diffusivity hypothesis in the modeling of the turbulence re-
lated terms, we have

n′u c
′t = −υ

turb
c

σnc

∇nt, (19)

and

α′cu c
′t = −υ

turb
c

σαc

∇αct, (20)

After substituting Eqs. (19) and (20) into Eq. (18), we have

f TD
d = −Ccd, p

t
(
υturb
c

σnc

∇nt

nt
− υturb

c

σαc

∇αct

αc
t

)
. (21)
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Here, we assumed that
σnc = σαc. (22)

Since βd = nVd and the bubble volume Vd is a constant, we have

∇nt

nt
=
∇βd

t

βd
t . (23)

Substituting Eqs. (22) and (23) into Eq. (21), we obtain

f TD
d = −Ccd, p

tυturb
c

σαc

(
∇βd

t

βd
t −

∇αct

αc
t

)
. (24)

Comparing the last equation with the turbulent dispersion force model in497

Burns et al. (2004), we can find that ∇αd/αd is changed to ∇βd/βd here.498
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numerical simulation–based reynolds-averaged closure for bubble-induced
turbulence. Physical Review Fluids 2, 034301.

37



Moraga, F., Larreteguy, A., Drew, D., Lahey Jr, R., 2006. A center-averaged
two-fluid model for wall-bounded bubbly flows. Computers & Fluids 35,
429–461.

OpenFOAM Foundation, 2020. OpenFOAM-dev.
URL: https://github.com/OpenFOAM/OpenFOAM-dev/

tree/7dd592ff4013fc6e444f27b12ff8729774cb5e0f/

applications/solvers/multiphase/reactingEulerFoam/

reactingTwoPhaseEulerFoam.

Prosperetti, A., 1998. Ensemble averaging techniques for disperse flows, in:
Particulate Flows. Springer, pp. 99–136.

Prosperetti, A., Jones, A., 1984. Pressure forces in disperse two-phase flow.
International Journal of Multiphase Flow 10, 425–440.
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