Establishing Micro Physiological Systems by means of a radiolabeled anti-EGFR antibody for the evaluation of new radioligands

Wiebke Sihver,¹ Anne-Kathrin Nitt-Weber,¹ Stephan Behrens,² Florian Schmieder,² Martin Ullrich,¹ Michael Bachmann,^{1,3,4} Klaus Kopka,^{1,4,5} Hans-Jürgen Pietzsch,¹ Frank Sonntag²

HELMHOLTZ

Institute for Material and Beam Technology

ZENTRUM DRESDEN ROSSENDORF

1) Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research; 2) Fraunhofer Institute for Material and Beam Technology IWS; 3) Technische Universität (TU) Dresden, School of Medicine, Faculty of Medicine, Carl Gustav Carus; 4) TU Dresden, National Center for Tumor Diseases (NCT); 5) TU Dresden, Faculty of Chemistry and Food Chemistry, School of Science; all Dresden, Germany

Motivation

⇒ Small animal experiments Usual

for evaluation of potential radiopharmaceuticals

Plan ⇒ **Reduction of animal experiments**

by establishing an organ-on-chip technology

"Micro-Physiological Systems (MPS)"^{1,2}

Availability of newly developed (radio)conjugates

Assay: for preincubation pumping + medium (total binding) through the modul (**Fig. 3**) + medium with 0.8 µM ,cold' C225 (nonspecific bg) + for 5 min at 80 bpm at a flow of 6.4 μ L/s

1 2.5

of

ration

+ for 5 min at 80 bpm at a flow of 6.4 μL/s for incubation + 1.2 to 15 nM radiolabeled C225 (Fig. 2) + in a total volume of 1 mL for 15 min + 10 min washing with PBS + 20 min exposing MPS modules to imaging plates (BAS, Fuji)	Fig. 7 Autoradiogra MPS (above above	H H H H H H H H	Thrue 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 [⁶⁸Ga]Ga-C225 (nM)
+ evaluation with AIDA (Elysia-Raytest) /GraphPad Prism	Saturation K _d (nM)	[⁶⁴ Cu]Cu-C225	[⁶⁸ Ga]Ga-C225
Keterences	Chip A431 spheroids / ML	9.5 ± 5.8 / 3.1 ± 0.7	9.4 ± 7.8 / 24.9
Busek et al., J Sens Sens Syst 2016, 5, 228.	Well plate A431 spheroids	4.4 ± 2.1	10.2 ± 2.1
Schmieder et al., Proc SPIE 2020, 11268, 1126804_1.	(ML – monolayer)	Mean ± SEM	

<u>o</u>

- S

TB 2.5 nM

TB 1.25 nM

standard

[⁶⁴Cu]Cu-C225

Institute of Radiopharmaceutical Cancer Research - Radionuclide Theragnostics Dr. Wiebke Sihver • w.sihver@hzdr.de • www.hzdr.de

15

▲ total binding ▲ nonspecific binding ▲ specific binding

[⁶⁴Cu]Cu-C225 (nM)

15

10

[68Ga]Ga-C225 (nM)