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Abstract 12 

Recent numerical investigations revealed that the heterogeneity of the dissolution rate observed 13 

in numerous experiments cannot be explained by fluid transport effects. This heterogeneity is 14 

attributed to intrinsic surface reactivity. Therefore, reactive transport models (RTM) require 15 

parameterization of the surface reactivity for accurate predictions. For this purpose, a 16 

nanotopographic parametrization based on surface slope has been recently suggested. In this 17 

study, we utilize and improve this parametrization for RTMs of pore-scale systems, from the crystal 18 

surface to the single crystal geometry, going beyond the previous reactivity parametrization. 2D 19 

and 3D RTMs were developed using COMSOL Multiphysics for calcite systems based on 20 

experimental measurements. We compared the results between classically parameterized RTMs, 21 

RTMs with new slope parameterization, and experimental data. The effect of flow on dissolution 22 

under conditions far-from-equilibrium is found to be negligible, highlighting the importance of 23 

surface reactivity in the dissolution reaction. For the first time, the new slope factor was able to 24 

accurately reproduce the experimental results on a crystal surface with large field-of-view, large 25 

height variability of the topography, and over a long-term reaction period. The new 26 

parameterization had greatly improved sensitivity for intermediate reactivity ranges compared to 27 

the previous parameterization. A 3D model is used to present the general applicability of the 28 

parameterization for use in realistic geometric data sets. Thus, we also show that neglecting 29 

surface reactivity in an RTM leads to incorrect predictions regarding the porosity, pore geometry, 30 

and surface topography of the system. Our new slope factor can successfully serve as a first-order 31 

proxy for the distribution of surface reactivity in 3D pore-scale rock systems. The description of 32 

surface reactivity is crucial for accurate long-term modeling of natural rock systems.  33 
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1. Introduction  38 

Mineral dissolution plays a key role in various natural processes such as weathering or reservoir 39 

rock formation, as well as in technical applications such as corrosion, mining, and waste 40 

management. Predicting mineral dissolution over long timescales (>100,000 years) is crucial to 41 

describe the stability of geomaterials in important applications, e.g., nuclear waste repositories for 42 

underground storage (Ewing et al., 2016).  Such predictions require a detailed understanding of 43 

the mechanistic processes involved in the dissolution reactions. An adequate model 44 

parametrization based on mechanistic insight is required to simulate the long-term behavior of any 45 

given system.  46 

 47 

Mineral dissolution is typically quantified via a dissolution rate. In the past, bulk-powder 48 

experiments have been applied to study the dissolution of various minerals (e.g., Chou et al., 49 

1989; Plummer et al., 1978). In these experiments, a single, mineral-specific value for dissolution 50 

rate is determined.  However, the reported individual dissolution rates for the same mineral, similar 51 

fluid compositions, and experimental conditions can vary by several orders of magnitude (Arvidson 52 

et al., 2003; Bollermann and Fischer, 2020).  Surface-sensitive microscopy techniques such as 53 

atomic force microscopy (AFM) (Lange et al., 2021; Pollet-Villard et al., 2016) or vertical scanning 54 

interferometry (VSI) (Bouissonnié et al., 2018; Fischer et al., 2012) can directly observe mineral 55 

surfaces during dissolution and reveal the evolution of surface topography over time. Tomographic 56 

measurements of dissolving materials can be obtained using techniques such as X-ray 57 

microtomography (µ-CT) (Noiriel and Soulaine, 2021; Noiriel et al., 2020). The use of these 58 

surface-sensitive methods revealed a large intrinsic variability in surface dissolution rates under 59 

identical conditions, besides the well-known extrinsic variability (e.g., Noiriel and Daval, 2017; 60 

Saldi et al., 2017). 61 

 62 

Mineral surface reactivity is not a material constant but arises due to nano- and microstructural 63 

heterogeneities caused by 2D and 3D defects in the crystal lattice. The heterogeneous distribution 64 

of surface reactivity has been extensively investigated for calcite (Arvidson et al., 2003; Liang and 65 

Baer, 1997), and a recent compilation can be found in Bollermann and Fischer (2020). New 66 

aspects include inherited reactivity of nanostructured surfaces (Fischer et al., 2018) as well as 67 

temporal fluctuations at far-from-equilibrium conditions (Fischer and Luttge, 2018). Similar studies 68 

exist for a variety of minerals such as feldspars (Lange et al., 2021; Pollet-Villard et al., 2016; 69 

Zhang and Lüttge, 2009), quartz (Kurganskaya and Luttge, 2013), and sheet silicates 70 

(Kurganskaya et al., 2012). The lattice defects result in the formation of steps and etch pits on the 71 
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crystal surface during reactions. Due to the resulting nanotopography, atomic surface sites with 72 

varying coordination and consequently different intrinsic reactivity such as terrace, step, or kink 73 

atoms are present on the crystal surface. The local surface reactivity is determined by the 74 

concentration of highly reactive kink sites on the crystal surface, according to findings from 75 

experimental and numerical investigations (Arvidson et al., 2003; Chen et al., 2014; Fischer et al., 76 

2014). A high concentration of kink sites is typically found at etch pits, surface steps, and crystal 77 

corners. Thus, a single dissolution rate cannot adequately describe the complex dissolution 78 

kinetics at the crystal surface.  Even on larger length scales, the variability in surface reactivity 79 

does not average out. This has been shown for both large crystals with edges, corners, faces 80 

(Noiriel et al., 2020; Noiriel et al., 2019) as well as polycrystalline materials (Bollermann and 81 

Fischer, 2020; Kahl et al., 2020). Powder samples consisting of small crystals typically do not 82 

show 2D or 3D lattice defects and exhibit a homogeneous crystal surface consisting almost 83 

entirely of kink and step sites with high reactivity (Bollermann and Fischer, 2020). Therefore, 84 

predictive approaches for mineral dissolution must consider and implement the distribution and 85 

density of reactive surface sites. 86 

 87 

In addition to experimental studies on mineral dissolution rates, numerical approaches have been 88 

applied to fundamentally understand the mechanisms of dissolution reactions at surfaces. At the 89 

nanometer to micrometer scale, kinetic Monte Carlo (KMC) simulations can be applied to study 90 

the evolution of surface topography, dissolution rates, and the distribution of surface reactivity as 91 

dissolution progresses. KMC can be used to predict dissolution nanotopographies and provides 92 

important mechanistic inferences about the dissolution reaction (Kurganskaya and Luttge, 2013). 93 

Using this method, it is possible to predict the kink site density and thus the surface reactivity 94 

(Kurganskaya and Luttge, 2016). For small crystal sizes, the KMC method can simulate the 95 

dissolution of whole crystal grains considering multiple surfaces (Luttge et al., 2013; Martin et al., 96 

2020). Larger system sizes can be achieved by using KMC-parameterized Voronoi simulations, 97 

which reduce computational costs while providing similar results (Rohlfs et al., 2018). KMC results 98 

can be validated with and compared to experimental data obtained with AFM or VSI 99 

measurements, and therefore provide a powerful tool for predicting reaction rates.  100 

 101 

At larger scales, reactive transport models (RTM) are commonly applied to simulate fluid flow, 102 

species transport and various processes in natural and engineered systems on various scales 103 

(Druhan and Tournassat, 2020; Molins et al., 2014; Prasianakis et al., 2017; Shao et al., 2009; 104 

Tournassat and Steefel, 2019; Yuan et al., 2016). RTMs can predict the evolution of various 105 

chemical and physical system parameters over a wide range of time scales. At the pore scale (µm 106 
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scale), the models typically describe the system with two distinct phases: solid and liquid. The 107 

model systems consist of pore space available for both fluid flow and transport, and solid mineral 108 

grains that interface with the fluid (Molins et al., 2021). Comprehensive reviews of flow and 109 

transport modeling are available for porous media (Blunt et al., 2013) and fractures (Berkowitz, 110 

2002). 111 

 112 

At the fluid-mineral interface, various interactions such as sorption, dissolution, or precipitation 113 

reactions have to be considered depending on the physicochemical conditions in the system. 114 

Chemical reactions in RTM are governed by the chemical driving force to reach equilibrium. In the 115 

fluid, aqueous complexation occurs as an equilibrium reaction depending on the species in the 116 

system (Molins et al., 2014; Steefel et al., 2015). Mineral interfaces dissolve when the fluid is 117 

undersaturated in the species of the respective mineral component. In the case of calcite, the main 118 

driving force for dissolution is the pH of the liquid, while pCO2 has only a weak influence 119 

(Pokrovsky et al., 2005). The calculation of mineral dissolution in pore-scale RTMs is based on 120 

rate laws derived from transition state theory,  using rate constants derived from bulk powder 121 

experiments (Molins et al., 2014). Thus, the rate calculations are based solely on extrinsic 122 

constraints linked via fluid composition.  123 

 124 

In contrast, the rate equation does not account for the previously mentioned experimental findings 125 

on heterogeneous dissolution rates and intrinsic surface reactivity. This illustrates the limited use 126 

of such rate constants for predicting reacting crystalline systems (Karimzadeh and Fischer, 2021). 127 

In transport-controlled regimes, the reactant concentrations in the fluid very efficiently control the 128 

rate constants describing the reactivity of the processes involved. In surface-controlled conditions, 129 

the influence of surface reactivity is by definition more important than transport effects in the 130 

system. Therefore, neglecting intrinsic reactivity significantly affects the simulation results and the 131 

predictive power of the model. Superimposing the variability of surface reactivity on transport-132 

controlled systems may induce small changes in simulation results since the main influence on 133 

dissolution rates originates from concentration gradients in the fluid. In addition to surface 134 

reactivity, natural mineral surfaces show distinct nano- to microtopographies arising from 135 

heterogeneous dissolution. Therefore, simulations must account for this small-scale interfacial 136 

roughness. Recent studies have addressed the influence of roughness in pore-scale RTMs and 137 

its effects on transport and mineral dissolution (Deng et al., 2018; Rasoulzadeh et al., 2020; Zou 138 

et al., 2017). However, these studies focus on either larger fractures (Zou et al., 2017) or artificially 139 

created surface roughness (Deng et al., 2018; Rasoulzadeh et al., 2020). In comparison to 140 

measured topographies in dissolution experiments, the height/depth of artificial topography 141 
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features is greatly exaggerated, e.g., comparing the roughness used by Deng et al. (2018) with 142 

pit depths ≤100 µm to the VSI measurements of Bibi et al. (2018) with depths up to ≤ 2 µm. 143 

 144 

Further studies investigated mineral dissolution in 3D µ-CT rock samples and the influence of the 145 

flow field on the reaction rate (Menke et al., 2017; Menke et al., 2016). High porosity in the rock 146 

formations leads to uniform dissolution, while lower porosities lead to channeling of the flow. The 147 

average rock dissolution rate can be orders of magnitude lower than for measurements on flat 148 

surface samples. This rate reduction is caused by transport limitations in regions far from fast flow 149 

channels and is greatest for channeled flow samples. Numerical simulations based on the µ-CT 150 

datasets confirmed the rate reduction for systems with high porosity heterogeneities (Pereira 151 

Nunes et al., 2016a; Pereira Nunes et al., 2016b). 152 

 153 

A recent study by Agrawal et al. (2021) investigated the effect of hydrodynamics on dissolution 154 

rate variability by simulating calcite dissolution based on experimental dissolution rate map data 155 

Bollermann and Fischer (2020). Their investigations focused on the heterogeneity of flow owing 156 

to increasing surface roughness during dissolution. They showed that local variability of 157 

hydrodynamic effects could not explain the experimental dissolution rate distribution. Thus, 158 

micrometer-scale heterogeneity of fluid flow field and composition was negligible. The surface 159 

roughness in the studied system had no significant hydrodynamic effects on the resulting reaction 160 

rates. Overall, the numerical approach failed to reproduce the experimental results, highlighting 161 

the need for parameterization of surface reactivity in RTM dissolution rate calculations, especially 162 

for surface-controlled conditions. To address this shortcoming, Karimzadeh and Fischer (2021) 163 

suggested a surface slope-based parameter, called the surface slope factor (SSF), to serve as a 164 

surrogate value for the reactivity distribution. The concept is based on the idea that highly reactive 165 

kink sites occur in high concentrations at atomic steps. A high concentration of atomic steps is 166 

found at sites with strong height changes in the µm range on the mineral surface, which can be 167 

identified with high slope values. Parameterized simulation of a dissolving calcite surface showed 168 

good agreement with experimentally obtained dissolution rates. 169 

  170 

This study aims to investigate the general applicability of surface slope as a way to parameterize 171 

reactivity for improved RTM approaches. The goal is to identify a general pathway to parameterize 172 

surface reactivity in pore-scale 3D RTMs, e.g., with µ-CT-derived pore space and mineral grain 173 

geometries. For this, we start with the classical pore-scale dissolution RTM approach at far-from-174 

equilibrium conditions using VSI maps of a calcite single crystal (Bibi et al., 2018). This dataset 175 

provides a larger field-of-view (FOV) than previous studies on single crystals (Karimzadeh and 176 
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Fischer, 2021) or polycrystalline (Agrawal et al., 2021) surfaces. The surface exhibits large height 177 

variations on a single crystal surface (up to 2 µm), compared to the surfaces from Karimzadeh 178 

and Fischer (2021) with up to 0.1 µm variations. The polycrystalline surfaces of  Agrawal et al. 179 

(2021) also show up to 2 µm height variation, but the height differences are mainly limited to grain 180 

boundaries and do not provide insight into the evolution of large height differences on single crystal 181 

surfaces. Additionally, the data set of Bibi et al. (2018) provides surface measurements for a 182 

dissolution reaction time of 6 h, which can be used directly for model validation. With these 183 

temporal and spatial scale differences, we can test the performance of the SSF parameterization 184 

on larger systems and explore a feasible way to upscale the approach to larger 3D systems 185 

consisting of multiple crystal grains. To achieve the goal of 3D applicability, we improve the SSF 186 

calculation to be independent of the spatial orientation of the surface. In a final step, we apply the 187 

slope parameterization approach to a simple 3D artificial rock model and test the influence of 188 

surface reactivity on the prediction of mineral dissolution in this system. Overall, this study tests 189 

the validity of the SSF parameterization approach for reactivity on a uniquely large data set and 190 

aims to provide an upscaling pathway for larger 3D rock pore network geometries.  191 
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2. Methods 192 

A classical pore-scale RTM approach was applied to test its predictive capabilities towards mineral 193 

dissolution rates. Three different cases were simulated: (1) flow through a 2D channel with a rough 194 

surface, (2) flow over rough single crystal surfaces, and (3) flow through an artificial rock (3D) 195 

model. All simulations were performed with COMSOL Multiphysics, using a finite element method 196 

(FEM). 197 

 198 

2.1 Material 199 

2.1.1 Surface topography analysis 200 

In both 2D and 3D simulations, the fluid-mineral interface was defined using the rough surface 201 

topography of a calcite single crystal measured by interferometry microscopy, published in Bibi et 202 

al. (2018). There, the surface topography of a pre-reacted (10-14) calcite face with etch pits was 203 

measured over a dissolution period of 6 h. This resulted in the collection of 80 surface topography 204 

datasets by quasi-in situ measurements, allowing for the calculation of dissolution rates via 205 

difference maps. The topography selected for implementation in our RTM was measured towards 206 

the end of the dissolution experiment after 6 h (Fig. 1 A). This data set was selected because it 207 

exhibited the greatest variation in surface height, which is expected to have the strongest influence 208 

on hydrodynamics. The corresponding dissolution rate map was calculated using the height 209 

changes between 6 and 6.5 h. This rate map was then compared to rate maps simulated using 210 

different dissolution rate equations. The measured surface area was 414 µm x 313 µm with a 211 

maximum height variation of ~2.2 µm in the selected data set. A flow rate of 6 mL per minute was 212 

applied during dissolution, resulting in a residence time of < 8 s, ensuring conditions of surface-213 

controlled reaction. Using the provided fluid volume of 0.5 mL and assuming a cubic shape, we 214 

can convert the flow rate to a flow velocity of ~1500 µm/s. In the 2D case, a single topography 215 

profile line was extracted parallel to the x-direction, resulting in a domain length of 414 µm (Fig. 1 216 

A, blue line). 217 



9 
 

 

Figure 1: (A) Topography of the calcite single crystal surface selected for simulation. The topography is the same 

as the initial topography used for dissolution rate calculation in Fig. 4 h in Bibi et al. (2018). This surface map 

shows the largest height variation of all the initial topography measurements. The blue dashed line indicates the 

surface profile line used in the 2D simulations (cf. Figs. 4 and 5). (B) SSF distribution calculated using Eq. (1), 

based on the approach of Karimzadeh and Fischer (2021). (C) SSF* distribution with the improved slope equation 

(Eq. (2)). The improved equation shows much higher sensitivity, especially in the regions of low to intermediate 

slope (e.g. shallow etch pits) where the features could not be resolved previously.  

 218 

2.1.2 Surface slope analysis and data treatment 219 

Karimzadeh and Fischer (2021) suggested the use of surface slope as a way to parameterize the 220 

distribution of reactivity on mineral surfaces, which is not included in the classical rate equation 221 

approach. The concept is based on the heterogeneous distribution of reactive atomic sites on the 222 

surface as a function of local step density. This step density is higher in regions with strong height 223 

variations over small length scales compared to atomically flat planes (Fig. 2). At the µm scale, 224 

these height variations can be observed via the surface slope, with high slope values indicating a 225 

strong accumulation of atomic steps on the surface. Atomic steps consist of atomic surface sites 226 

with the highest reactivity for dissolution reactions: Step sites and in particular kink sites 227 

(Bollermann and Fischer, 2020). A high atomic step density may thus indicate a high concentration 228 

of reactive sites, leading to an overall increase in local reactivity. Areas of high surface tilt are 229 

mainly located at surface features such as etch pits and larger steps. 230 
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Figure 2: Schematic drawing of the surface slope on an atomic scale using the example of a Kossel-Stranski 

crystal surface. The envelope slope is represented by a red surface. (A) An atomically flat surface with no 

inclination and no crystal steps on the surface. (B) Crystal surface with a few steps leading to an intermediate 

slope. There are highly reactive kinks in the steps (red cubes). (C) Crystal surface with increased slope, resulting 

in higher step density and thus higher concentration of kink sites on the same surface. Based on this concept, the 

slope factor is used as a proxy parameter to describe the density distribution of steps and kinks and therefore the 

reactivity distribution on mineral surfaces.  

 231 

Karimzadeh and Fischer (2021) calculated the SSF by using the surface gradient in the z-direction 232 

as a component of the surface normal vector perpendicular to the surface geometry: 233 

𝑆𝑆𝐹(𝑥, 𝑦) = 𝑛𝑧 = ∇𝑓(𝑧) (1) 

This value can be calculated for any surface point, allowing the parameterization of each element 234 

at the interface. The resulting SSF distribution is shown in Fig. 1 B. The disadvantage of this 235 

calculation is that the general orientation of the surface must be perpendicular to the z-direction 236 

in order to capture a deviation using Eq. (1). In real 3D systems with grains consisting of multiple 237 

surfaces, this approach is not applicable. To overcome this problem, we have improved the SSF 238 

equation to use the arctangent of the surface gradients of the normal vector in all spatial directions 239 

and relate it to the average orientation of the surface: 240 

𝑆𝑆𝐹∗(𝑥, 𝑦) = tan−1(|𝑛𝑥 − 𝑛𝑥̅̅̅̅ | + |𝑛𝑦 − 𝑛𝑦̅̅̅̅ | + |𝑛𝑧 − 𝑛𝑧̅̅ ̅|) (2) 

This allows SSF calculation independent of the spatial orientation of the surface. Additionally, this 241 

equation is more sensitive to low slope values. In comparison to Fig. 1 B, calculated with Eq. (1), 242 

the new SSF* calculation increases the areas with low to medium SSF values and shows features 243 

such as shallow etch pits, which were not resolved by the previous calculation (Fig. 1 C).  244 
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 245 

2.1.3 Slope Factor Normalization 246 

The relationship between dissolution rate and SSF must be adjusted by normalizing between the 247 

two values. Karimzadeh and Fischer (2021) and the present study use a simple linear SSF 248 

normalization. Here, the maximum rate corresponds to an SSF value of one, a rate of zero 249 

corresponds to an SSF of zero, and a linear distribution of rates mediates between the two extreme 250 

values. For our application to calcite single-crystal surfaces, this normalization produces results 251 

in good agreement with the experimental data, as presented in the following sections of this study. 252 

However, for different mineral systems, a more complex and case-adapted SSF normalization 253 

might be required. In general, there are two main options for adjusting the SSF normalization. The 254 

first is the slope of the normalization curve, which can be adjusted by changing the SSF value at 255 

which the maximum dissolution rate is reached. The gradient is used to describe the average 256 

kinetics of the complete crystal surface. As a second option, the shape of the normalization curve 257 

can be modified if a linear shape does not correctly represent the surface reactivity. Here, 258 

intermediate support points can be included in the SSF normalization to vary the gradient in 259 

specific regions where reactivity is increased or decreased in comparison to the average surface 260 

kinetics. Additionally, weighting factors can be included for local rate change in certain slope 261 

regions. 262 

By using these control options, SSF can be applied to any crystal surface. Tuning of the SSF 263 

normalization needs to be performed by fitting simulation results to experimental rate spectra. 264 

Once a normalization with a good fit is achieved, it can be used for all further simulations with 265 

surfaces of the same mineral. 266 

 267 

2.2 Fluid flow and transport 268 

The simulation exemplifies the reaction kinetics in a single pore with a calcite crystal surface as 269 

pore wall in the micrometer range in a geological system (Fig. 3). Only slow fluid velocities were 270 

considered for fluid flow in the system (Reynolds number << 1). All simulations were performed at 271 

an average velocity of 1000 µm/s unless otherwise stated, similar to the estimated experimental 272 

velocity of 1500 µm/s. The fluid flow in our system was simulated assuming laminar flow 273 

conditions. The Navier-Stokes equation for the flow of an incompressible viscous fluid was applied: 274 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇u) = −∇𝑝 + 𝜇∇2𝑢 (3) 

∇ ∙ 𝑢 = 0 (4) 
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where 𝜌 is the fluid density (kg·m-3), 𝑢 is the fluid velocity (m·s-1), 𝑡 is the time (s), 𝑝 is the fluid 275 

pressure (Pa) and 𝜇 is the dynamic viscosity (Pa·s). The flow was simulated above the calcite 276 

surface for a height of 75 µm in 2D, 30 µm in 3D, and 10 µm in 3D with moving boundaries. The 277 

geometry of the artificial rock is a cube with an edge length of 1500 µm. A fully developed flow or 278 

normal inflow velocity when using moving boundaries was applied at the inlet and a constant 279 

pressure condition was applied at the outlet. For the boundary interface with the calcite or other 280 

grain surfaces, the “no-slip” condition (𝑢 = 0) was applied. For the surface simulations, a leaking 281 

wall boundary condition with a fluid velocity in the x-direction was applied to the upper boundary, 282 

selected in proportion to the average flow velocity in the system (𝑢upper = 1.5 ∙ 𝑢avg). For the two 283 

vertical boundaries parallel to the flow direction, the open boundary condition without viscous 284 

stress and without slip condition for moving boundaries was applied. For the artificial rock 285 

geometry, the calcite grain had the dimensions of 313 x 414 x 300 µm3 and the additional inert 286 

grains had a radius of 400 µm for the large grain and 250 µm for the four small grains. 287 

 288 

 

Figure 3: Schematic representation of a sedimentary rock consisting of larger grain components and intergranular 

pore space. The pore space can be filled with fine-grained minerals and cement or be empty and available for fluid 

flow. The inset shows an enlarged view of the mineral surface with all processes considered in the simulations. 

 289 

For the simulation of species transport in the system, we applied the advection-diffusion-reaction 290 

equation for general transport: 291 
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𝜕𝑐𝑖
𝜕𝑡

= ∇ ∙ (𝐷𝑖∇𝑐𝑖) − 𝑢 ∙ ∇𝑐𝑖 + 𝑅𝑖 (5) 

where 𝐷𝑖 is the diffusion coefficient (m2·s-1), 𝑐𝑖 is the concentration (mol·m-3) and 𝑅𝑖 is the reaction 292 

input (mol·m-3·s-1) of species 𝑖. Unless otherwise stated, a diffusion coefficient of 1·10-9 m2·s-1 was 293 

used for all species in all simulations. 294 

To quantify the importance of advection, diffusion, and reaction rates under different flow and 295 

transport conditions, two dimensionless parameters were used: The Péclet number (Pe) and 296 

Damköhler number (Da). The test of different flow conditions was performed in the 2D simulation 297 

case. The Péclet number is the ratio of the advection rate to the diffusion rate and is calculated 298 

as: 299 

Pe =
𝑢avg ∙ 𝐿

𝐷
 (6) 

where 𝐿 is the characteristic length (m). Here we selected the diameter of the flow channel for 𝐿. 300 

Pe > 1 shows an advection-dominated transport regime, whereas a Pe < 1 indicates a diffusion-301 

dominated transport regime. 302 

The Damköhler number relates the reaction time scale at the surface to the advection time scale 303 

and is calculated as: 304 

Da =
𝑇A
𝑇R

 (7) 

𝑇A =
𝐿

𝑢avg
 (8) 

𝑇R =
𝐶Calcite
𝑆𝑅

 (9) 

where 𝑇A is the advection and 𝑇R the surface reaction time scale. 𝐶Calcite is the density of surface 305 

sites of calcite (mol·m-2) and was obtained from Wolthers et al. (2008). 𝑆𝑅 is the surface reaction 306 

rate (mol·m-2·s-1) and the reaction rate calculated at x = 100 µm was selected for the calculation 307 

of Da. Da > 1 indicates that the dissolution rate is limited by transport, while Da < 1 indicates 308 

dissolution rates limited by the surface reaction rate. 309 

 310 

2.3 Geochemistry 311 

As in the experiment, the solid phase in the model consisted of pure calcite. Initially, the species 312 

concentrations in the pore solution were adjusted to be in equilibrium with the calcite crystal 313 

surface, so that the dissolution was zero. At the beginning of the simulation, the concentrations in 314 
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the incoming fluid were slowly changed to obtain a solution with a pH of 8.82, as used in the 315 

experiment of Bibi et al. (2018). All species concentrations of the initial equilibrium solution and 316 

the influent solution are listed in Table 1. A zero gradient boundary condition was applied at the 317 

outlet. All other boundaries except the fluid-mineral interface were modeled with a no-flux 318 

boundary condition. 319 

 320 

Table 1: Species concentration of the initial equilibrium fluid (Agrawal et al., 2020) 

and the influent fluid corresponding to the pH condition used in Bibi et al. (2018). 

CO2 (gas) is removed from the system for the final 3D slope simulations to reduce 

the computational cost, while still adequately describing the system.  

Species 
Equilibrium Solution 

(mol/m3) 
(Agrawal et al., 2020) 

Inflowing Solution (mol/m3) 

CO2 (gas) 6.67·10-4 31.622 

CO2 (aq) 2.27·10-5 1.077·10-2 

CO3
2- 3.38·10-2 1.189·10-1 

HCO3
- 8.35·10-2 3.320·100 

H+ 1.27·10-7 1.589·10-6 

OH- 8.35·10-2 6.942 ·10-3 

Ca2+ 0.117 0 

pH 9.91 8.82 

 321 

At the interface, the surface of the calcite crystals can dissolve and release Ca2+ and CO3
2- into 322 

the solution. This was implemented by using a flux boundary condition. In RTMs, the dissolution 323 

of the crystalline matter is usually simulated by applying a rate law according to transition state 324 

theory (Lasaga and Lüttge, 2003; Steefel et al., 2015). For calcite, the standard rate law is: 325 

𝑅𝑎𝑡𝑒Calcite [
mol

m2 ∙ s
] = (𝑘1 ∙ 𝑎H+ + 𝑘2 ∙ 𝑎CO2(aq) + 𝑘3 ∙ 𝑎H2O) ∙ (1 − 10

2
3
∙SI) (10) 

SI =
𝑎Ca2+ ∙ 𝑎CO3

2−

𝐾sp
 (11) 

where 𝑘1, 𝑘2 and 𝑘3 are the reaction rate constants and 𝑎 is the activity of all species involved in 326 

the process. SI is the saturation index and is computed from the ratio of the ion activity product 327 

and the solubility constant 𝐾sp. There are multiple sources from literature for the reaction rate 328 

constants and the solubility constant (Busenberg et al., 1986; Plummer et al., 1978). In our model, 329 
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we use the values reported by Chou et al. (1989): 𝑘1 = 8.9·10-5, 𝑘2 = 5.0·10-8, 𝑘3 = 6.5·10-11 and 330 

𝐾sp = 10-8.46 at 25°C. 331 

To describe surface reactivity in the rate equation, we include the previously introduced SSF as a 332 

simple factor dependent on the local slope values: 333 

𝑅𝑎𝑡𝑒𝑆𝑆𝐹(𝑥, 𝑦) = 𝑆𝑆𝐹(𝑥, 𝑦) ∙ 𝑅𝑎𝑡𝑒Calcite(𝑥, 𝑦) (12) 

2.4  Simulation of Topography Evolution 334 

In order to simulate the changing topography of the crystal surface with proceeding dissolution, 335 

we introduced a moving boundary condition for the calcite surface and the calcite grain. We used 336 

the “deformed geometry” function available in COMSOL for this calculation. Based on the local 337 

dissolution rate, we calculated a local surface retreat velocity v (m·s-1) using the molar volume of 338 

calcite Vm (m3·mol-1):  339 

vRetreat(x, y) = Rateα(x, y) ∙ Vm (13) 

This retreat velocity was then applied to the dissolving calcite surface, which in turn can change 340 

the slope and therefore the reactivity distribution as the simulation time progresses. Over larger 341 

simulation times, height changes of up to several micrometers can be simulated.  342 
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3. Results and Discussion 343 

The results of this study are presented in five sections, each consisting of results section followed 344 

by a discussion section. In the first section (3.1), we use a 2D cross-sectional simulation over the 345 

rough calcite surface to evaluate the influence of hydrodynamics on the surface dissolution rate. 346 

In a second step (3.2), we compare the classically simulated dissolution rates with experimental 347 

data and focus on specific crystal surface sections to investigate whether the classical approach 348 

can adequately describe the mineral dissolution. In subchapter 3.3, simulation results using the 349 

new SSF parameterization are compared to both, the classical simulation approach and 350 

experimental results. Subsection 3.4 examines the temporal evolution of the surface topography 351 

and the prediction of the dissolution rate using the new SSF parametrization and including the 352 

spatial modification of surface reactivity. In the final step (3.5), the reactivity parameterization is 353 

applied to an artificial 3D rock geometry, in contrast to the simpler situation of a single crystal 354 

surface. Here we compare results to calculations without reactivity parameterization and highlight 355 

the differences. We show a pathway to apply the surface-dependent SSF for use with realistic 356 

rock geometry data. 357 

 358 

3.1 Influence of heterogeneity of surface topography on transport and reaction 359 

rates (2D simulation) 360 

3.1.1 Results 361 

In this RTM, we simulated dissolution rates along the calcite-fluid interface with rough topography 362 

available from VSI data. We varied the reaction and transport conditions at the surface by 363 

changing flow velocities and diffusion coefficients. The flow velocities were used to control surface 364 

dissolution rate limitations (Da), with low flow velocities leading to transport-controlled conditions 365 

and high flow velocities leading to surface reaction rate-controlled conditions. The main transport 366 

mode, advection or diffusion, was controlled by varying the diffusion coefficients. All selected flow 367 

velocities and diffusion coefficients, as well as the resulting Pe and Da numbers for the eight 368 

simulated cases, are presented in Fig. 4. The resulting calcium concentration profiles up to 2 µm 369 

above the calcite surface are shown in Fig. 4. Calcium is  released only by the dissolution reaction 370 

at the surface, as the inflowing fluid has a calcium concentration of zero. 371 

 372 



17 
 

 

Figure 4: Simulated Ca2+ concentration profiles up to 2 µm above the rough calcite surface under different 

transport and reaction conditions. The respective Péclet and Damköhler numbers are given for each case. 

Advection-controlled (Pe > 1) conditions lead to boundary layer formation with high concentration of solute species. 

Diffusion-controlled conditions (Pe < 1) result in a homogeneous distribution of solute species. Higher flow 

velocities result in overall lower Ca2+ concentrations in the domain. Experimental conditions (u ≈ 1500 µm/s, D ≈ 

1·10-9 m2·s-1) in Bibi et al. (2018) are expected to lead to a solute concentration distribution similar to the case with 

high flow velocities and intermediate diffusion coefficient (Pe = 3.75·101, Da = 1.79·10-2). 

 373 

When diffusive transport dominates in the system (cf. cases in the bottom row), the calcium 374 

released from the surface is homogeneously distributed in the liquid without any gradient being 375 

observed. An increasing in fluid velocities under diffusion-dominated conditions causes an overall 376 

lower calcium concentration in the fluid (cf. case at bottom right vs. case at bottom left). Under 377 

transport conditions where the influence of advective transport increases, a concentration gradient 378 

is developed from the inlet to the outlet (cf. case in the central section). This effect is better 379 

observed in the simulations with low diffusion strength (cf. case in the upper left). Predominant 380 

advective transport leads to the formation of a boundary layer with high calcium concentration and 381 

to the formation of a concentration gradient between the surface and the center of the flow channel 382 

(cf. case in the upper left). The thickness of the boundary layer decreases with increasing velocity. 383 

We expect that the experiment in Bibi et al. (2018), based on the estimated experimental 384 
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conditions of u ≈ 1500 µm/s and D ≈ 1·10-9 m2·s-1, leads to a concentration distribution similar to 385 

the case with high flow velocity and intermediate diffusion (Pe = 3.75·101, Da = 1.79·10-2). 386 

For all simulation cases, the dissolution rates based on the classical rate equation along the 387 

interface from inlet (x = 0 µm) to outlet (x = 414 µm) are shown in Fig. 5. When diffusion is the 388 

dominant transport mode, the dissolution rates are constant over the entire length. A decrease in 389 

fluid flow rate under these conditions is expected to change the limitation of the reaction rate from 390 

surface- to transport-controlled conditions. The only visible effect in the simulation results is the 391 

decrease in the overall dissolution rate while it remains constant along the interface. With 392 

increasing advective transport, a gradient in dissolution rate is observed from the inlet to the outlet. 393 

At the highest advective influence, a high gradient near the inlet is followed by a low dissolution 394 

rate, which is largely constant. As expected, dissolution rates increase with flow velocity and 395 

surface reactivity control until a near-zero calcium concentration is reached in the fluid, where the 396 

rate maximum is observed. This result is similar to the dissolution plateau reported by Liang and 397 

Baer (1997), which occurs when dissolution is controlled solely by the surface reaction rate. 398 

 399 

The comparison between RTM and experimental reveals a large difference in the behavior of the 400 

dissolution rate. The experimental rate shows a constant baseline dissolution with distinct peaks 401 

at certain locations on the surface. These locations are the steps forming the two etch pits included 402 

in the selected profile line. In none of the simulated cases are there peaks in the dissolution rate 403 

that could be associated with features of the surface topography such as steps. Comparison of 404 

the experimental results with the simulation case with similar conditions (Pe = 3.75·101, Da = 405 

1.79·10-2) reveals two major differences. First, the overall rate is overestimated in the model with 406 

an average rate of about 4·10-6 mol·m-2·s-1, whereas in the experiment a maximum rate of about 407 

1·10-6 mol·m-2·s-1 is reached when it peaks. Second, no rate peaks are observed in the RTM, and 408 

a gradient is predicted that is not seen in the experimental data. Even with a wide range of 409 

conditions, the RTM is not able to reproduce the experimental result. 410 
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Figure 5: Calcite dissolution rate at the topographic boundary under different flow and transport conditions: Blue 

for high D, yellow for intermediate D, and red for low D values. Solid lines represent high u, dashed lines 

intermediate u, and dotted lines low u values. The arrangement of the color scale legend corresponds to the image 

setup in Fig. 4. Strong diffusive transport leads to a constant dissolution rate. With decreasing influence of diffusive 

transport, the rate follows a decreasing gradient from inlet to outlet. Higher flow velocities increase the overall 

dissolution rate. No rate variability is visible under any condition, in contrast to the rate variability in the experimental 

profile. Experimental conditions were set to satisfy Pe > 1, Da < 1 (Bibi et al., 2018; Liang and Baer, 1997). 

 411 

3.1.2 Discussion 412 

Hydrodynamic conditions can play a key role in the distribution of dissolution rates on mineral 413 

surfaces. Under transport-controlled conditions, the flow velocity and diffusion of solute species 414 

are the key parameters describing the dissolution reactions and thus determine their distribution. 415 

When shifting to a surface reactivity-driven dissolution regime with high transport efficiency due to 416 

high flow velocities or diffusion, the mineral surfaces exhibit a heterogeneous distribution of rates, 417 

as shown by measurements using surface-sensitive techniques (Bibi et al., 2018; Fischer et al., 418 

2014). Do hydrodynamic effects cause and/or modify this heterogeneous rate pattern or is it 419 

dictated solely by intrinsic crystal properties (Agrawal et al., 2021; Fischer et al., 2014)?  420 

To answer this question, we investigate the species concentrations at different transport conditions 421 

during the dissolution reaction. The simulations with conditions matching the experimental 422 
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specifications failed to reproduce the heterogeneous distribution of the dissolution rate. The 423 

topography of the mineral surface can affect the fluid flow and create concentration gradients 424 

leading to varying dissolution rates. A similar effect has been reported by Deng et al. (2018), who 425 

used RTM to study pore-scale dissolution of calcite at rough pore walls. They reported that an 426 

increase in surface roughness due to a larger surface area resulted in an overall increase in the 427 

dissolution rate. This increase is not linear, as increasing roughness creates immobile or 428 

recirculating fluid zones in surface pits. Here, the concentrations of dissolved ions increase, 429 

limiting the dissolution rate via a high local saturation (Eqs. 11 and 12). However, the surface 430 

roughness applied by Deng et al. (2018) produces pits with a wide range of depth-to-width ratios 431 

(d/w ratio), ranging from 1 : 5 to 1 : 20. In contrast, the d/w ratios observed on the reacted crystal 432 

surface show values 1 : >85. No formation of recirculation zones was observed in our simulations. 433 

The only rate-decreasing effect under the experimental conditions is some hydrodynamic shadow 434 

regions, which are responsible for only a very small rate reduction. Calculations show that such 435 

rate decrease is about two to three orders of magnitude below the overall dissolution rate for d/w 436 

ratios of 1 : >85. This rate decrease is less than the line width of the VSI rate curve in Fig. 5. In 437 

comparison, for an artificial cuboidal pit on a flat surface, the concentration accumulation in a pit 438 

with a depth-to-width ratio of 1 : 100 results in a 0.1% rate decrease, while a pit with a ratio of 1 : 439 

10 results in a 1% decrease. Rasoulzadeh et al. (2020) report similar results where they 440 

investigated the influence of sinusoidal pits (~1 : 2 d/w ratio) on calcite dissolution rates. The 441 

difference in dissolution rates between sine maximum and minimum is << 1%, and at higher 442 

Reynolds numbers the rate maximum shifts towards the wall facing the fluid flow. Other numerical 443 

studies have shown similar results in the past. Harb and Alkire (1989) investigated the growth of 444 

corrosion pits using a finite element model. Their simulations of a shallow, rounded pit (d/w ratio 445 

~ 1 : 3.5) on the pore wall show that flow can enter the pit without forming recirculation zones 446 

whose flow velocity decreases only slightly. The simulated concentration of dissolved ions showed 447 

an increased concentration in the center of the pit. In the simulations of fluid flow over circular pits 448 

by Higdon (1985), the importance of pit width relative to depth for the formation of recirculation 449 

zones can be observed. In the case of the shallowest simulated pit (d/w ratio ~1 : 4.5), the flow 450 

field can enter completely into the center of the pit. As the pit depth increases  (up to a d/w ratio ~ 451 

1 : 2), a recirculation zone forms at the bottom of the pit, similar to the results of Deng et al. (2018). 452 

 453 

The reported rate reduction effect is strongest in the surface pits. In contrast, the experimental 454 

data show that the highest reaction rates are found at the positions of the two largest etch pits on 455 

the profile (Fig. 5). Thus, we conclude that there appears to be a competing effect between the 456 

rate reduction due to local hydrodynamics and the rate increase due to the high local surface 457 
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reactivity at the etch pit walls. Therefore, neglecting surface reactivity in RTMs leads to an 458 

incomplete description of the dissolution. Agrawal et al. (2021) investigated calcite surface 459 

sections of smaller dimensions (21 µm) that exhibited pits with higher d/w ratios (1 : 2.5) in an 460 

RTM due to the polycrystalline nature of the sample.  Their results confirmed the absence of 461 

transport-controlled rate variability in the experimental approach. Overall, these studies confirmed 462 

the general conclusion about intrinsic dissolution rate variability. Nevertheless, the elevated and 463 

constant rates of the simulation results (Figs. 5 and 6) require a new numerical treatment 464 

(Karimzadeh and Fischer, 2021).  465 
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3.2 Mineral dissolution under surface controlled conditions (3D simulation) 466 

3.2.1 Results 467 

The dataset investigated by Bibi et al. (2018) covers a relatively large field of view (FOV) compared 468 

to the FOV investigated in previous studies, e.g., Agrawal et al. (2021) with surfaces of 21 x 21 µm2 469 

and Karimzadeh and Fischer (2021) with 95 x 95 µm2. Additionally, a long reaction period of 6 h 470 

is covered by around 80 individual surface measurements in the present dataset. Thus, this 471 

dataset provides several important clues for the validation of an RTM parametrization focusing on 472 

the reactivity of the crystal surface. 473 

 474 

To cover specific parts of the surface reactivity, the 3D calcite surface is divided into three separate 475 

cases for simulation, shown in Fig. 6. Case (A) consists of the complete measured surface from 476 

Bibi et al. (2018) (Fig. 1 A) with a FOV of 414 × 313 µm2. Two subsections are selected to cover 477 

the extreme features of the surface topography: the deepest etch pit on the surface (B) with a FOV 478 

of 116 × 105 µm2 and the highest step structure (C) with a FOV of 101 × 100 µm2. All simulations 479 

here use the same flow velocity (1000 µm·s-1) and diffusion coefficient (1·10-9 m2·s-1), identical to 480 

the 2D simulation with Pe = 3.75·101 and Da = 1.79·10-2, which we expect based on the 481 

experimental constraints (Figs. 4 and 5). Figure 6 shows the surface topography (I) and the 482 

experimental dissolution rate (II) and compares them with the model result (III and IV). Row V 483 

shows the difference in dissolution rates between a model with the VSI surface topography and a 484 

model with a flat surface of the same size to quantify the influence of surface topography. The 485 

maps of experimental dissolution rates show the heterogeneous distribution of dissolution rates 486 

discussed previously, which can be associated with the surface topography structures such as 487 

etch pits and steps. In contrast, the simulation yields a very similar rate distribution for all three 488 

cases. Two effects are observed when comparing the models with the VSI surface to a model with 489 

a flat surface (Fig. 6 V). The first effect consists of numerical errors visible for the smaller model 490 

sizes of cases (B) and (C), caused by random local minima or maxima in the hydrogen 491 

concentration along the lateral boundaries. This could be due to chosen boundary conditions. The 492 

second effect shows a decrease in the dissolution rate at the locations of the etch pits, similar to 493 

the effect discussed in Section 3.1.2. In our simulation, this decrease in dissolution rate caused 494 

by transport is two to three orders of magnitude smaller than the calculated rate and therefore 495 

does not significantly affect the overall rate distribution. For the large surface step, no visible effect 496 

of topography on the dissolution rate can be detected. 497 

 498 

Further details on the dissolution rate distribution can be derived from the rate spectra of the 499 

respective cases for RTM and experiment (Fig. 7). The rate spectrum for the entire surface shows 500 
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a single peak at around 0.2 ·10-6 mol·m-2·s-1 and a large range of dissolution rates >2 ·10-6 mol·m-501 

2·s-1. The two subsections show different contributions. At the large etch pits, the overall reactivity 502 

is increased compared to the entire surface, but the general distribution of the spectrum remains 503 

similar. No clear peak is visible at the surface step, but a wide range of surface portions with higher 504 

rate contributions is seen. In contrast, the RTM rate spectra show a completely different rate 505 

distribution. All rates are >3.6 ·10-6 mol·m-2·s-1 and the maximum range of rates is <0.4 ·10-506 

6 mol·m-2·s-1 for the entire surface, resulting in an almost singular rate value. The smaller surface 507 

sections show the same rate distribution, but with a shift of the minimum value to higher rates. 508 

This shift is due to the small rate gradient from inlet to outlet mentioned earlier, which decreases 509 

as the surface sections become smaller. Here, the rate is even more confined to a small range. 510 

The rate spectra confirm the large discrepancies between model and experiment observed in the 511 

rate maps. 512 

 513 

In general, the RTM dissolution rate distribution closely resembles the previous 2D result and does 514 

not reproduce the experimental findings with the same sample topography. Only a minor influence 515 

of topography was observed, which does not contribute significantly to the overall rate distribution. 516 
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Figure 6: (A) Full data set of calcite single crystal surface with the two areas of interest for detailed investigation 

marked on the height map: (B) large etch pit and (C) large surface step. For all areas, (I) the height, (II) the 

experimental dissolution rate, (III) the simulated rate, and (IV) the difference in dissolution rate between the rough 

and flat mineral surface are shown. From the comparison of the maps of experimental (II) and simulated (III) 

dissolution rate, a clear difference is observed. The effect of topography on the simulated rates is two to three 

orders of magnitude less than the rate itself (IV). Pit locations show a decreased dissolution rate in the RTM (A-

IV, B-IV), while the large step shows no effect on the dissolution rate (C IV). Numerical boundary errors are 

observed along the lateral boundaries in the difference maps (IV). These errors have only a minor influence on the 

total simulated dissolution rate (III). 

 517 
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Figure 7: Rate spectra corresponding to the rate maps shown in Fig. 6 for the simulated (left) and experimental 

(right) results. The spectra highlight the strong differences in dissolution rates between RTM and experiment. The 

RTM predicts rates that are four times higher than the observed rates. The range of simulated rates is much 

narrower and is close to a single value for the entire surface.  

 518 

 519 

3.2.2 Discussion 520 

In agreement with the results from 2D RTM, the 3D simulations are not able to reproduce the 521 

experimental dissolution rate maps measured by Bibi et al. (2018). The reason for this discrepancy 522 

is the lack of a description of surface reactivity in the widely used calcite rate equation (Eq. 10). In 523 

both our simulations and the experimental setup used to measure surface dissolution rates, 524 

hydrodynamic conditions lead to a surface-controlled dissolution rate regime. Above a threshold, 525 

a further increase in flow rate does not lead to any additional increase in dissolution rates (Liang 526 

and Baer, 1997). Here, the influence of transport on rates is negligible. Mineral intrinsic effects are 527 

thus the cause of the observed variabilities in dissolution rates under such conditions.  528 

 529 

Various experimental studies have confirmed a heterogeneous distribution of dissolution rates 530 

under the same transport conditions (Arvidson et al., 2003; Bollermann and Fischer, 2020). A 531 

large difference was found between the dissolution rates of powders and mineral surfaces, which 532 

was explained by the different concentration of reactive sites (Arvidson et al., 2003). This 533 

highlights the limited applicability of single rate constants derived from powder measurements 534 

such as Busenberg et al. (1986) for the calculation of dissolution rates under surface-controlled 535 

reaction conditions. On mineral surfaces, larger structures such as etch pits or macrosteps show 536 

greater intrinsic reactivity than flat surface sections (Pollet-Villard et al., 2016). These structures 537 

evolve over time through step motion, leading to the widening of etch pits, the formation of larger 538 
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steps, and the generation of new stepwaves (Bibi et al., 2018; Fischer and Luttge, 2018). It has 539 

been shown that the use of the stepwave model in an RTM improves the description of calcite 540 

dissolution (Bouissonnié et al., 2018). Bollermann and Fischer (2020) have highlighted the 541 

importance of multiple rate components that rely on surface building blocks to cause the formation 542 

of various topographic features. A comprehensive review of surface reactivity can be found in 543 

Fischer et al. (2014). The lack of an implementation of surface reactivity in the RTM rate equation 544 

leads to the results presented (Fig. 6 and 7), which incorrectly predict the rate distribution and 545 

magnitude in our system. 546 

 547 

Atomic-scale modeling provided additional mechanistic insight into the influence of reactive atomic 548 

sites and their distribution on mineral surfaces on dissolution rates and was able to confirm 549 

previous experimental findings (Kurganskaya et al., 2012; Lasaga and Lüttge, 2003). Numerical 550 

approaches that do not include the mineral surface reactivity in their rate description are not able 551 

to achieve the same results (Agrawal et al., 2021).  The effect of natural calcite surface topography 552 

on fluid flow and hence transport is small (<  2 ·10-8 mol·m-2·s-1) compared to the total simulated 553 

( ~ 4 ·10-6 mol·m-2·s-1) or experimental ( > 2 ·10-6 mol·m-2·s-1) dissolution rates. 554 

The recent publications by Agrawal et al. (2021) and Karimzadeh and Fischer (2021) confirm this 555 

small effect of natural mineral surfaces on the transport efficiency in the system and thus on the 556 

dissolution rate. In conclusion, the results of classical 3D RTM highlight the need for 557 

parameterization of reactivity in dissolution rate calculations, recently reported by Agrawal et al. 558 

(2021) and Karimzadeh and Fischer (2021).  559 
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3.3 Newly-parameterized 3D RTM towards surface rate variability 560 

3.3.1 Results 561 

Based on the slope parameterization (SSF) approach recently developed by Karimzadeh and 562 

Fischer (2021), an improved SSF* calculation was developed (Eq. 2). This new parameter 563 

improves the sensitivity to shallower surface structures and can be applied independently of the 564 

surface orientation in the model. In the parameterized RTM, the SSF* is calculated for all elements 565 

of the mesh on the calcite surface (Fig. 1) and used as a factor in the classical rate equation (Eq. 566 

12). The distribution of the linear SSF* normalization for the calcite surface is shown in Fig. 1 C. 567 

The simulation uses the same flow and transport conditions as the previous 3D simulations 568 

(u = 1000 µm·s-1, D = 1·10-9 m2·s-1).  569 

 570 

The application of SSF* strongly alters the RTM simulation results in terms of dissolution rate (Fig. 571 

8). The resulting dissolution rate map shows a largely heterogeneous distribution of rates, very 572 

similar to the distribution in the experimental counterpart (Fig. 6 A II). High dissolution rates are 573 

concentrated in the deep etch pits and large steps of the calcite surface. Intermediate rates are 574 

found at shallower etch pits and smaller steps on mostly flat surface areas. Surface areas without 575 

any structures show dissolution rates close to zero, similar to the experimental results. Overall, 576 

we conclude that the simulation results are in good agreement with the measured data with 577 

respect to the heterogeneous rate distribution. This conclusion is supported by the comparison 578 

between the rate spectra of the parameterized RTM and the experiment. Both datasets show a 579 

single high rate peak, which is 1.3·10-7 mol·m-2·s-1 in the experiment and at 0.6·10-7 mol·m-2·s-1 in 580 

the simulation. At higher dissolution rates, the percentage of the surface decreases to values close 581 

to zero, with only small sections contributing the highest dissolution rates. The overall range of 582 

dissolution rates is in much better agreement with experimental observations compared to the 583 

previous model (0 to 2 ·10-6 mol·m-2·s-1). The previously observed rate gradient between inlet and 584 

outlet can no longer be observed, as it has little effect on the total dissolution rate (<  0.4·10-585 

6 mol·m-2·s-1). Application of the previously developed SSF (Karimzadeh and Fischer, 2021) leads 586 

to a divergent map of the dissolution rate, similar to the SSF distribution in Fig. 1 B. In the rate 587 

spectrum, the SSF parameterization yields 40 % of the surface with zero dissolution rate. These 588 

differences highlight the improved sensitivity of the new SSF* calculation towards smaller rate 589 

contributions to the dissolution rate spectrum. The implementation of the SSF* leads to improved 590 

overall agreement between the dissolution rates in the experiment and the RTM in compared to 591 

the classical RTM and the previous SSF approach.  As a first-order parametrization, the surface 592 

slope can adequately describe the surface reactivity distribution associated with the surface 593 

topography. 594 
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 595 

 

Figure 8: Left: Dissolution rate maps created with the improved slope factor parameterization using the surface 

topography from Fig. 6 A I. The implementation of the slope factor enhances the influence of surface steps and 

pits on the dissolution rate, as can be observed in the experimental rate map (Fig. 6 A II). Compared to the previous 

RTM results (Fig. 6 A III), the agreement between simulation and experiment is greatly improved. Right: 

Comparison of the dissolution rate spectra between the improved RTM approach with slope factor and the 

experimental results shows the better agreement compared to the previous RTM approach (Fig. 7). 

 596 

3.3.2 Discussion 597 

The inclusion of surface reactivity in the dissolution rate equation via the surface slope leads to 598 

results that agree well with experimental measurements. This confirms the results of Karimzadeh 599 

and Fischer (2021), who first introduced the use of surface slope as a proxy for reactivity. The 600 

involvement of surface normal components in the improved SSF* resulted in a remarkable 601 

improvement regarding the sensitivity of the parameterization to small rate contributions at the 602 

surface. With the previous SSF, nearly half of our sample surface would exhibit zero dissolution 603 

rates, showing large differences from experimental observations. Additionally, the new equation 604 

allows for spatially independent calculation of surface reactivity, which is required for 3D datasets 605 

with whole crystal grains. The major advantage of reactivity parameterization via slope is that no 606 

prior knowledge of the surface reactivity distribution is required once a good normalization is 607 

established. Agrawal et al. (2021) included reactivity in their model by using the dissolution rate 608 

map available from experimental measurements. This approach is not practical for crystal surfaces 609 

without prior experimental dissolution data and cannot predict the evolution of reactivity as reaction 610 

time progresses. The SSF* parameterization presented can be applied to any new calcite surface 611 

and approximate its reactivity on a first-order basis. 612 

 613 
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The theoretical basis of the SSF* is obviously correct, since it can reproduce the reactivity 614 

distribution. A high slope value may indicate a high concentration of atomic-scale steps on the 615 

surface. These steps consist of multiple differently coordinated atomic sites (Luttge et al., 2013). 616 

Most important for the dissolution reaction is the high concentration of kink sites located at the 617 

atomic steps on the surface (Fischer et al., 2014). Kinks are comparatively easy to dissolve from 618 

the surface and can propagate on surface features such as steps. Thus, for calcite, the distribution 619 

of kink sites primarily controls the overall dissolution rate (Kurganskaya and Luttge, 2016). To 620 

predict surface reactivity, one must be able to predict the distribution of kink sites. At the pore-621 

scale, the slope of a mineral surface can describe the distribution of kink sites as a first-order 622 

approximation. 623 

 624 

A potential issue in parameterizing the slope is known as step bunching. In this process, atomic 625 

steps can catch up with the preceding step and form stable steps of larger vertical heights 626 

(Amelinckx et al., 1957; Schwoebel and Shipsey, 1966). Bunched steps dissolve more slowly than 627 

single atomic layer steps as they lose kink sites during bundling of multiple single layer steps 628 

(Cheng and Coller, 1987). Bunching cannot be resolved with the slope value because one large 629 

step can give the same value as several small steps. This might lead to an incorrect prediction of 630 

surface reactivity by the SSF* calculation.  631 

 632 

The key to a precise approximation of reactivity is the normalization of the SSF*. As already 633 

described in the methods section, we use a simple linear normalization where a SSF* value of 634 

one is equal to the maximum simulation rate. For the calcite surface, this normalization leads to a 635 

good approximation of the experimental data. However, such normalization is most likely not 636 

universally applicable to other crystal surfaces. It is also possible that differently oriented surfaces 637 

on the same crystal require separate normalizations of the slope factor, as observed in 638 

experiments (Saldi et al., 2017). In a more complex normalization, the overall slope of the 639 

normalization curve can be changed to tune the overall surface reactivity. If certain rate regions 640 

are over- or underestimated, sections of slope values in the rate can be decreased or increased 641 

to match the experimental rate spectrum across defined support points. 642 

 643 

In conclusion, our results confirm that slope parameterization can provide a good approximation 644 

of first-order surface reactivity. This improvement in the reactivity description for RTMs is essential 645 

for simulating the system under surface-controlled conditions, especially in natural environments 646 

at the pore scale.  647 
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3.4 Temporal evolution of dissolution rates 648 

3.4.1 Results 649 

A moving boundary based on the surface retreat velocity (Eq. 13) was implemented to observe 650 

surface topography evolution due to material flux over longer dissolution periods, and its influence 651 

on the simulated rate. The surface retreat is simulated for 6 h and the SSF* is renormalized at 652 

each intermediate time step. 653 

 654 

Initially, strong surface retreat occurs at the etch pit walls due to the high concentration of high 655 

dissolution rates there (Fig. 9). As dissolution progresses, a widening of the etch pits is observed, 656 

with the etch pit walls moving outward from the central pit axis. The shift of the etch pit walls results 657 

in accompanying movement of regions of high reactivity due to the high slopes. This movement 658 

follows the crystallographically controlled shape of the calcite etch pits and is best seen in the two 659 

largest etch pits in the center of the surface image. Simultaneously, the etch pits increase in depth 660 

as the dissolution reaction progresses. The movement of the steps and etch pit walls is directly 661 

related to the movement of the surface reactivity. At high simulation times, numerical errors occur 662 

in our simulation, leading to the formation of individual pits (Fig. 9 360 min). These pits have 663 

extreme slope values and thus accumulate the highest dissolution rates at the surface. The use 664 

of finer meshes reduces this effect and increases the maximum simulation time.  665 

 666 

The rate spectrum remains similar for the first 3 h of dissolution time with the same shape as 667 

described in the previous section. This is consistent with the observations of the rate map, where 668 

the overall distribution remains similar and the highly reactive regions move only across the 669 

surface. For longer simulation times, the percentage of surface areas with rates >1 ·10-6 mol·m-670 

2·s-1 increases, while the surface areas with intermediate rates decrease. The percentage of 671 

surface area at high dissolution rates remains largely constant. This change in the rate spectrum 672 

is most likely associated with the development of pit spikes, where most of the surface tends 673 

toward lower dissolution rates. Apart from this effect, no changes in the dissolution rate spectrum 674 

were observed as dissolution progressed. The shape of the overall rate spectrum remained the 675 

same over time, with shifts between high- and low-reactive regions observed in the rate maps.  676 
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Figure 9: Evolution of the simulated system over 6 h of dissolution. The first column shows the rate maps after 90, 

180, and 360 minutes. The second column shows all corresponding rate spectra (logarithmic y-axis). The third 

column shows the change in height accumulated over the reaction time. The dissolution rate distribution and 

spectra remain in a similar distribution during the first 180 minutes, with the reaction fronts moving outward from 

the pit center. After 180 minutes, individual pits develop with the highest reaction rates, while the largest sections 

of the surface transition to lower rates. The greatest height changes are observed at the etch pits, which widen 

and deepen as dissolution progresses. 

 677 

3.4.2 Discussion 678 

The temporal evolution of mineral dissolution and surface reactivity can be directly compared to 679 

the time series measured by Bibi et al. (2018). Some differences can be observed when comparing 680 

the rate maps. The experiment shows changes in the reactivity of the entire surface and also some 681 

specific surface areas over time. The average dissolution rate on the surface may increase and 682 

then decrease over time, with no pattern that can be deduced. The impact of surface structures 683 

can also change with time. Here, the central etch pit shows variations where the pit wall shows 684 
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high rates, but no consistent change over time. In contrast, our simulation results remain relatively 685 

constant over time with little changes due to the movement of the steps and thus reactivity on the 686 

surface. The agreement of the simulation with the experimental results varies depending on the 687 

interval chosen. This temporal behavior cannot currently be explained (Bibi et al., 2018), and our 688 

simulation does not reproduce this behavior, leading to the conclusion that the underlying 689 

mechanism is not yet included in the current reactivity distribution. 690 

 691 

In other publications, the temporal evolution of the dissolution rates is investigated as well. 692 

Bollermann and Fischer (2020) did not observed a steady-state behavior of the dissolution rate 693 

for polycrystalline calcite. The overall surface normal retreat remained constant over the reaction 694 

period, while the local reactivity may change over time. In our simulation result, the overall rate 695 

spectrum remains mostly constant over the dissolution period without any significant changes. 696 

Fischer and Luttge (2018) described the pulsating behavior of surface reactivity at etch pit 697 

locations over time, resulting in multiple fronts that move outward from the pit as dissolution 698 

progresses. Our model predicts a similar step movement away from the etch pit center. However, 699 

no new reaction front is generated at the center of the pit, thus no pulsating behavior could be 700 

observed. 701 

 702 

In general, the temporal behavior of dissolution rates and surface reactivity is poorly understood 703 

at present. Our model is not able to reproduce all currently available experimental results. It is 704 

therefore likely that the mechanisms involved have not been fully elucidated and are therefore not 705 

included in our reactivity parameterization. Further studies investigating the influence of time on 706 

dissolution reactions are needed to provide the basis for further improving the parametrization of 707 

the models.  708 
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3.5 Implications for larger 3D datasets 709 

3.5.1 Results 710 

To test the implementation of the SSF* in a 3D dataset consisting of multiple mineral grains, we 711 

developed a simple artificial pore geometry (Fig. 10 A). The geometry includes five inert quartz 712 

grains to create a heterogeneous flow field in the domain. Attached to the largest quartz crystal is 713 

a cuboidal calcite crystal that dissolves as the simulation time progresses. The front surface of the 714 

calcite crystal has the rough surface topography (Fig. 1 A), while the other four surfaces are 715 

entirely flat. The simulation uses the same geochemical, flow, and transport conditions as the 716 

previous 3D simulations (u = 1000 µm·s-1, D = 1·10-9 m2·s-1) to induce calcite dissolution. Two 717 

simulations are performed and compared. In case (I), the classical rate equation without reactivity 718 

contribution is used, while case (II), the SSF* is included in the rate equation to describe the 719 

dissolution of the rough front surface. 720 

 721 

In case (I), the highest dissolution rates are observed at the crystal edges and corners (Fig. 10 722 

C). At these locations, the fluid flow passed the crystal and generates stronger velocity gradients 723 

with comparatively high fluid velocities close to the surface. This results in high local transport 724 

efficiency and increases the dissolution in comparison to the surfaces of the crystal. All five 725 

surfaces of the calcite crystal show constant, homogenous dissolution rates. The enclosed 726 

topography does not play a role in the dissolution of the frontal surface. Case (II), which includes 727 

the SSF* reactivity description, also shows the highest dissolution rates at the corners and edges 728 

(Fig. 10 B). The hydrodynamic conditions here are the same as in case (I), thus the same 729 

explanation applies. However, with proceeding dissolution, the edges become more rounded and 730 

consequently form areas with high slope values, which then continue to lead to high dissolution 731 

rates in later stages of the reaction. The lateral surfaces show the same behavior as in case (I), 732 

since they do not exhibit topography. In contrast, the frontal surface shows a strongly deviating 733 

rate distribution. The average dissolution rate is lower in comparison and the rates are not 734 

homogenously distributed. Even after 3 days of reaction time, the topography of the surface 735 

remains and influences the reactivity. Highly reactive areas are visible on the frontal surface (Fig. 736 

10 B) and can be directly related to pit structures on the surface. The resolution of the structures 737 

in this model is relatively low compared to the previous simulations due to the overall larger system 738 

size and associated larger element size.  739 

 740 

Figure 10 D compares the dissolution rate spectra of both cases after 3 days. In case (I), the 741 

minimum rate is 0.25 ·10-6 mol·m-2·s-1, while the flat crystal faces have rates between 0.3 ·10-742 

6 mol·m-2·s-1 and 0.8 ·10-6 mol·m-2·s-1. At higher rates, two main peaks are visible. The first peak 743 
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at 1.1 ·10-6 mol·m-2·s-1 represents the surface areas close to the crystal edges where the rate 744 

increases due to the higher transport efficiency. At about 1.5 ·10-6 mol·m-2·s-1, the dissolution rates 745 

associated with the crystal edges and corners can be observed. A small high rate peak at 2 ·10-746 

6 mol·m-2·s-1 indicates the rate contribution of the vertices. In contrast, case (II) has large surface 747 

fractions with near-zero dissolution rate, which is due to the application of the SSF* on the front 748 

surface. On the front surface, increased dissolution rates due to surface reactivity contribute to 749 

the rate spectrum at about 0.4 ·10-6 mol·m-2·s-1. A second peak at 1.3 ·10-6 mol·m-2·s-1 shows the 750 

high dissolution rates at the edges and corners.  751 

 752 

Overall, two major differences can be observed between the classical and SSF* approaches. First, 753 

the surface topography does not play a role in the classical approach and will not change during 754 

the dissolution. In contrast, surface reactivity based on topography affects the rate distribution in 755 

the SSF* model. The heterogeneous rate distribution leads to changes in the surface topography 756 

and consequently to changes in the reactivity distribution over time. Second, the average 757 

dissolution rate of the calcite surface decreases when reactivity is included. Therefore, the 758 

evolution of the pore space over longer time periods will differ greatly between the two models. 759 
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Figure 10: (A) Model sandstone with five inert quartz grains (grey spheres) and a calcite crystal (blue cuboid) 

located on the largest quartz grain. The calcite grain consists of four surfaces with no topography and one surface 

with the previously used topography dataset (opposite the quartz crystal). The inlet for flow is the left front boundary 

(red), and the outlet is at the opposite boundary (green). Calcite grain shape and dissolution rate distribution after 

3 days of dissolution with (B) and without (C) the SSF* parameterization. (D) Dissolution rate spectra for the entire 

crystal surface. 

 760 

3.5.2 Discussion 761 

Both simulations predict that the strongest influence on the dissolution rate originates from the 762 

crystal corners and edges. This behavior has been observed previously in experiments on calcite 763 

single crystals (Noiriel and Soulaine, 2021; Noiriel et al., 2020; Noiriel et al., 2019). Noiriel and 764 

Soulaine (2021) discuss that some methods to compute dissolution rates from µ-CT datasets can 765 

lead to an overestimation at the edges of the crystal sample. In our model, the dissolution rates 766 

are first calculated based on chemical and reactivity conditions, and then lead to a corresponding 767 
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decrease in height. The process is thus reversed compared to the experimental path and a high 768 

dissolution rate cannot be due to this effect. 769 

In case (I), the high rates at edges and corners can be caused exclusively by hydrodynamic 770 

conditions and are not related to intrinsic crystal reactivity. Increased reactivity was found at edges 771 

and corners due to the high concentration of kink sites at these surface features (Bollermann and 772 

Fischer, 2020; Noiriel et al., 2019). Figure 11 shows a schematic overview of the crystal surface 773 

and explains the heterogeneous reactivity at flat surfaces, etch pits and edges. The increased 774 

edge reactivity can be captured with the slope parameterization, as the rounded edges exhibit an 775 

increased slope in comparison to the flatter surfaces they connect. Due to their inherent reactivity, 776 

the highest rates remain at the edges. In contrast, the crystal surfaces have, on average, lower 777 

concentrations of reactive sites and therefore lower dissolution rates.  778 

This difference is visible in case (II) and is similar to the measurement of Noiriel et al. (2019). The 779 

main cause of high dissolution rates on the surface are etch pits that open up as the reaction time 780 

progresses and consequently produce large steps of high reactivity that move across the surface 781 

in both simulation and experiment (Noiriel et al., 2019). This behavior cannot be reproduced with 782 

the classical rate equation, where the structures of the surface topography do not play any role in 783 

the dissolution reaction. Therefore, such a model introduces errors in predicting the evolution of 784 

the fluid-mineral interface over time, which can affect surface-sensitive processes such as the 785 

adsorption of species onto the surface. It may also affect the evolution of pore geometries in 786 

natural rock systems in terms of parameters such as shape and connectivity. 787 

 788 

The overall lower dissolution rates when SSF* is included also result in a slower volume loss of 789 

the crystal (Fig. S1 in the Supporting Information). After three days, the difference between the 790 

two cases is about 2% of the initial volume, and the difference increases with time. This can lead 791 

to large differences in simulations on long time scales. A linear extrapolation of the volume loss in 792 

our two cases shows that crystal reaches half of its volume after 340 days without SSF* 793 

parameterization, while it requires 420 days when the SSF* is included. Large differences in 794 

predicted dissolved volume affect the available pore space, pore geometries, and permeability of 795 

the simulated rock sample. This can be illustrated by a simple calculation based on a sandstone 796 

with 15% calcite cement and 2% porosity described by Heidsiek et al. (2020). Using our simple 797 

volume loss extrapolation, the porosity of the sandstone increases after 340 days to 9.5% without 798 

the SSF* and to 7.9% with the SSF* parameterization. The difference in predicted porosity is 1.5%, 799 

which may have a significant effect on the hydrodynamic conditions in the sandstone, especially 800 

for permeability-determining volumes at pore throats. A precise description of the pore structures 801 

is needed to model and predict the evolution of geological environments as they play a critical role 802 
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in controlling the physical properties and processes in the rock (Anovitz and Cole, 2015). 803 

Therefore, to achieve an accurate prediction of future hydrodynamic conditions in the rock, a 804 

precise approximation of mineral surface reactivity is required. 805 

 806 

 

Figure 11: Schematic representation of the crystal surface before (S0) and after (S1) dissolution. Exemplary rate 

spectra based on block removal are shown for specific surface sections, including a flat area, an etch pit wall, and 

the crystal corner. The flat surface shows only the general height retreat and an uniform dissolution rate. At the 

etch pit, more blocks are removed due to the higher reactivity at the steps. Thus, the dissolution rates increase 

and show a more heterogonous pattern due to differences in the concentration and rate of the reactive sites. The 

crystal corner has the highest concentration of reactive sites. Here, the most material is removed, resulting in the 

highest observed dissolution rates. 

  807 
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5. Summary and conclusions 808 

We have confirmed the conclusion from previous publications that the current rate equation 809 

approach in pore-scale reactive transport models cannot reproduce the experimentally derived 810 

dissolution rates for mineral surfaces (Agrawal et al., 2021; Karimzadeh and Fischer, 2021). 811 

Surface reactivity is a material-inherent parameter that needs to be considered, especially for 812 

surface controlled transport conditions. Based on the approach by Karimzadeh and Fischer (2021) 813 

to use the surface slope as an approximation for first-order reactivity, we further improved the rate 814 

equation based on the surface slope parametrization. The improved SSF* can be applied to 815 

datasets with a larger field of view, larger height variation, and longer reaction times. The SSF* 816 

approach significantly improves the agreement between model and experimental results with 817 

respect to the components of the dissolution rate spectrum. This improved fit increases the 818 

predictive capabilities of reactive transport models regarding porosity and permeability evolution 819 

of natural rock samples. Our parameterization can be applied to pore network scale simulations, 820 

e.g., derived from µ-CT datasets. The parameter can be applied to any mineral by fitting the SSF* 821 

normalization to the respective experimental rate spectra. Once an SSF* normalization is derived, 822 

it can be used for any future simulation with surfaces of the same mineral. In this study, we have 823 

shown a pathway to incorporate a first-order approximation for surface reactivity into large pore-824 

scale models to obtain an accurate description of the mineral dissolution and thus the evolution of 825 

the pore network, flow field, and permeability.  826 
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