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Highlights 

 A data-driven modeling (DDM) framework is established for applications in the HZDR 

multiphase fluid simulation framework based on the Eulerian-Eulerian approach. This 

work further focuses on the application of the DDM framework in data-driven drag model 

for bubbly flows. 

 The implementation of DDM framework is verified via an artificial problem, in which the 

simulation results based on feedforward neural network drag model emulating correlation 

by Tomiyama et al. (1992) showed good agreement with the reference.  

 Pseudo-steady state filtering in the Frenet moving frame is applied to the bubble tracking 

data set (Fang et al., 2017) in order to obtain drag coefficients of bubbles from the data of 

interface-captured direct numerical simulation of turbulent bubbly flow. 

 The interface-captured DNS data-driven drag model was applied to the case based on the 

setup by Shawkat et al., (2008). The performance of the data-driven drag model is 

discussed. 

 

Highlights (for review)



DEVELOPMENT OF MACHINE LEARNING FRAMEWORK FOR 

INTERFACE FORCE CLOSURES BASED ON BUBBLE TRACKING 

DATA 

 

Cheng-Kai Tai1,*, Ilya Evdokimov2, Fabian Schlegel2, Igor A. Bolotnov1 and Dirk Lucas2 

 
1Department of Nuclear Engineering, North Carolina State University 
2Department of FWDC, Helmholtz-Zentrum Dresden Rossendorf 
*Corresponding author: ctai2@ncsu.edu 

 

ABSTRACT 

Interfacial force closures in the two-fluid model play a critical role for the predictive 

capabilities of void fraction distribution. However, the practices of interfacial force modeling 

have long been challenged by the inherent physical complexity of the two-phase flows. The 

rapidly expanding computational capabilities in the recent years have made high-fidelity data 

from the interface-captured direct numerical simulation become more available, and hence 

potential for data-driven interfacial force modeling has prevailed.  

In this work, we established a data-driven modeling framework integrated to the HZDR 

multiphase Eulerian-Eulerian framework for computational fluid dynamics simulations. The 

data-driven framework is verified in a benchmark problem, where a feedforward neural 

network managed to capture the non-linear mapping between bubble Reynolds number and 

drag coefficient and reproduce the void distribution resulting from the baseline model in the 

test case.  

The second focus is on utilizing the bubble tracking data set to form a closure for the 

bubble drag in the turbulent bubbly flow, in which the drag coefficient is set to be correlated 

with the bubble Reynolds number and the Eötvös number. Pseudo-steady state filtering in the 

Frenet Frame was carried out to obtain the drag coefficient from the turbulent bubbly flow data. 

The performance of the data-driven drag model is also examined through a case study, where 

improvement of model’s prediction near-wall is regarded necessary. Discussion and further 

plans of investigation are provided. 

 

Keyword: direct numerical simulation, data-driven modeling, interfacial force modeling, machine 

learning, Eulerian-Eulerian approach 

 

Title Page

mailto:ctai2@ncsu.edu


DEVELOPMENT OF MACHINE LEARNING FRAMEWORK FOR 

INTERFACE FORCE CLOSURES BASED ON BUBBLE TRACKING 

DATA 

 
Cheng-Kai Tai1,*, Ilya Evdokimov2, Fabian Schlegel2, Igor A. Bolotnov1 and Dirk Lucas2 

 
1Department of Nuclear Engineering, North Carolina State University 
2Department of FWDC, Helmholtz-Zentrum Dresden Rossendorf 
*Corresponding author: ctai2@ncsu.edu 

 

ABSTRACT 

Interfacial force closures in the two-fluid model play a critical role for the predictive 

capabilities of void fraction distribution. However, the practices of interfacial force modeling 

have long been challenged by the inherent physical complexity of the two-phase flows. The 

rapidly expanding computational capabilities in the recent years have made high-fidelity data 

from the interface-captured direct numerical simulation become more available, and hence 

potential for data-driven interfacial force modeling has prevailed.  

In this work, we established a data-driven modeling framework integrated to the HZDR 

multiphase Eulerian-Eulerian framework for computational fluid dynamics simulations. The 

data-driven framework is verified in a benchmark problem, where a feedforward neural 

network managed to capture the non-linear mapping between bubble Reynolds number and 

drag coefficient and reproduce the void distribution resulting from the baseline model in the 

test case.  

The second focus is on utilizing the bubble tracking data set to form a closure for the 

bubble drag in the turbulent bubbly flow, in which the drag coefficient is set to be correlated 

with the bubble Reynolds number and the Eötvös number. Pseudo-steady state filtering in the 

Frenet Frame was carried out to obtain the drag coefficient from the turbulent bubbly flow data. 

The performance of the data-driven drag model is also examined through a case study, where 

improvement of model’s prediction near-wall is regarded necessary. Discussion and further 

plans of investigation are provided. 

 

Keyword: direct numerical simulation, data-driven modeling, interfacial force modeling, machine 

learning, Eulerian-Eulerian approach 
 

1. Introduction 

Two-phase flow phenomenon has a wide range of applications in engineering practices. 

In the context of water-cooled reactors, understanding of gas-liquid bubbly flow serves as the 

foundation to the operational safety of the reactor systems. However, the inherent complexity 

of the multi-phase flow phenomenon rendered modeling of bubbly flow a challenging task and 

hence a still popular topic among two-phase flow researchers. 

One of the two-phase flow modeling frameworks commonly adopted in engineering 

practices is the Eulerian-Eulerian (E-E) approach [1, 2, 3], as shown in eq. (1) to (3): 
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 𝜕𝛼𝑘𝜌𝑘

𝜕𝑡
+ 𝛻 ∙ (𝛼𝑘𝜌𝑘𝑢𝑘) = 𝛤𝑘 , 𝑘 = 𝑙, 𝑔 (1) 

 𝜕𝛼𝑘𝜌𝑘𝑢𝑘

𝜕𝑡
+ 𝛻 ∙ 𝛼𝑘𝜌𝑘𝑢𝑘𝑢𝑘 = −𝛻𝛼𝑘𝑝𝑘 + 𝛻 ∙ (𝛼𝑘𝜏𝑘) + 𝛼𝑘𝜌𝑘𝑔 + 𝑀𝑖𝑘  

(2) 

 𝑀𝑖𝑘 = 𝐹𝐷 + 𝐹𝐿 + 𝐹𝑉𝑀 + 𝐹𝑇𝐷 + 𝐹𝑊 (3) 

 

where 𝑘 = 𝑙, 𝑔 stands for the liquid and gas phase, respectively. Γ𝑘 is the mass source for phase 

𝑘. Under the scope of this work, Γ𝑘 = 0 since phase change is excluded. 𝑀𝑖𝑘 accounts for the 

momentum source for the phase 𝑘 during interfacial momentum exchange, which is modeled 

into the separate effects by drag (𝐹𝐷), lift (𝐹𝐿), virtual mass (𝐹𝑉𝑀), turbulent dispersion (𝐹𝑇𝐵), 

and wall force (𝐹𝑊). Compared to the direct numerical simulation (DNS), in which the smallest 

time and spatial scales of turbulence and bubble dynamics are resolved, the E-E approach 

accounts for the ensemble of the instantaneous conservation equations for mass and momentum. 

And the interface between liquid and gas is not explicitly captured. This brings tremendous 

advantage in computational cost in performing E-E approach-based computational fluid 

dynamics (CFD) simulations over DNS, and hence CFD simulation based on two-fluid model 

remains the workhorse for engineering applications. On the other hand, however, the predictive 

capabilities on void distribution and phasic velocity hinges heavily upon the robustness of 

individual interfacial force closure as well as the interaction between closures for different 

interfacial force terms. However, due to the inherent complexity of interfacial momentum 

exchange, a set of interfacial force closures generalizable to different engineering applications 

remains a goal pursued by researchers nowadays [4].  

 In the recent decade, the ever-growing computational capability of high-performance 

computing (HPC) systems has made DNS an affordable source of high-fidelity and high-

resolution data. Specifically for the two-phase flows, the interface captured DNS can provide 

further insight to the complicated two-phase flow phenomena. Fang et al. [5] performed 

interface captured DNS with PHASTA to study the bubbly flow in pressurized water reactor 

(PWR)-relevant subchannel geometry. In the simulation, 17 bubbles are explicitly tracked with 

the interfaces between gas and liquid phases captured with the level-set method [6]. The bubble 

tracking capabilities allows the exportation of flow data in the vicinity of the interfaces and 

hence suitable for the study of interfacial momentum export. Cambareri et al. [7] studied bubble 

dynamics of adiabatic bubbly flow in a PWR subchannel with the spacer grid and mixing vanes 

with interface captured DNS. Five cases with void fraction 1%, 3%, 5%, 10% and 15% were 

studied. The presence of the spacer grid and mixing vanes resulted in promoted liquid cross 

flow and mixing between subchannels. On the other hand, the swirling liquid caused the 

bubbles swarm towards the centerline of the subchannel and drastically altered liquid statistics 

there. Note that local liquid velocity data and flow statistics are also available thanks to the 

bubble tracking algorithm. Saini and Bolotnov [8] investigated the interaction of droplets with 

PWR subchannel structures in the dispersed flow film regime with interface captured DNS. 

This research topic is of importance to understand the droplet dynamics in post-loss of coolant 

accident (LOCA) scenarios. The explicitly captured interfaces allow detailed understanding of 

droplet morphology along the flow, which paves the path toward improvement of heat transfer 

correlations for system thermal hydraulics analysis. Fan et al. [9] developed proportional-
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integral-derivative (PID) bubble controller for the interface captured DNS with PHASTA. The 

PID controller anchors the bubble in a relatively small computational domain by compensating 

the interfacial forces experienced by the bubble. The main advantage of the PID controller is 

allowing lower computational cost for investigation of bubble deformation and interfacial force 

terms. With the PID controller, a bubble deformation map is established, and the bubble 

topology was validated by experimental works.  

On the other hand, the growth in data supply and computational capabilities a has made 

data-driven approach an attractive measure to tackle challenges in closure development for 

thermal fluid simulations. Sandberg et al. [10] employed large eddy simulation (LES) data and 

gene expression programming to develop the closures for non-linear shear stress and turbulent 

heat flux for trailing-edge cooling slot cases. Zhu et al. [11] developed an adaptive turbulence 

modeling approach for Reynolds-averaged Navier Stokes equations (RANS) framework based 

on ensemble learning. The proposed multi-model data driven turbulence modeling (MDTM) 

approach modulates the balance between knowledge base and high-fidelity data base by 

introducing multiple baseline models for low-fidelity simulation. The flexibility in baseline 

model allows the high-to-low (Hi2Lo) turbulence modeling scheme to choose the best one and 

hence improves the generalization capability of data-driven model. Bao et al. [12] established 

feature similarity measurement (FSM) for the coarse-grid CFD (CG-CFD) simulation based on 

the data-driven method. The proposed framework allows to bridge the gap in global simulation 

parameters of data sets by evaluating distribution of local (cell or grid point level) flow features. 

The FSM combined with deep learning technique was deployed to study the connection 

between error in CG-CFD simulation to the local physical coverage conditions. It was shown 

that the FSM has good predictive capability when the physical coverage condition is in the 

interpolation range. On the ML applications in two-phase flows, the high-fidelity data by first 

principle-based simulations, such as DNS, contains valuable information to support/inform the 

development of closures for sub-grid phenomena to the simulations in the engineering practices. 

Ma et al. [13, 14] applied neural network and interface tracked DNS data of to form closure for 

in the two-fluid model. The considered problem is the evolving bubbly flow of (nearly) 

spherical bubbles of the same size in a rectangular box. The data-driven model showed decent 

performance in predicting evolution of void distribution in the cases generating training data 

and those with different initial condition and void fractions. Albeit the simplicity of the 

modeled problem, this work has shown the potential of DNS data informing turbulence models 

in the lower-order simulations. Liu et al. [15] leveraged the data from large eddy simulation 

(LES) of pool boiling with interface explicitly tracked and employed deep feedforward neural 

networks (FNN) to inform the pool boiling heat transfer behaviors for the two fluid model-

based simulation. The quantities of interest (QoI) predicted by the deep FNN showed good 

agreement between the reference data from LES in both extrapolation and interpolation test 

cases. The authors also pointed out that the generalization capabilities of the FNN model, in 

terms of scale invariances and flow regime, should be further examined.  

From the review above, it is obvious that the ML methods’ potential has prevailed in 

different aspects of thermal fluid simulation. the advantage of machine learning (ML) methods 

in tackling two-phase flow problems are: (1) efficiency handling large data sets, (2) flexibility 

in model form and complexity, and (3) capability representing/approximating complicated 

mathematical relations and physical processes. These traits make ML methods an attractive 
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measure to approach two-phase flow closures. 

This work aims to establish a data-driven modeling (DDM) framework upon the HZDR 

E-E framework and baseline models [16] that can extract useful information from the high-

fidelity data using ML algorithms. Then, given the significance of drag force in predictive 

capability of velocity profile in the problem of interest, this work also presents the development 

of data-driven model for drag force in bubbly flow using the DNS data [5]. The resulting data-

driven drag model is employed in place of baseline drag to demonstrate the DDM framework. 

However, the DDM practice with the bubble tracking data set is challenged by the following: 

(1) the turbulent bubbly flow is inherently transient, (2) bubble interface is constantly being 

created/eliminated due to break up/coalescence of bubbles in the source DNS case. (3) 

momentum exchange between gas and liquid phases is further complicated by the topology 

evolution in turbulent liquid flow. The quality of the DDM framework will be compromised if 

without proper feature identification and data pre-processing. Therefore, a benchmark problem 

(case study I) utilizing artificial data set to model bubble drag coefficient is firstly studied to 

verify the proposed DDM framework. Also, sensitivity study on model size, amount of data 

learned are carried out to help the development of data utilization strategies. The artificial data 

is generated based on known correlation or analytical solution of known relation. Such 

characteristics make artificial data set an ideal candidate for model and framework verification. 

Then, based on the experience on case study I, we show the preliminary results on using DNS 

bubble tracking data set [5] for data-driven drag model for bubbly flow. Details of problem 

formulation and results will be discussed in the following sections.  

The rest of the paper is organized as following: section 2 will introduce the methodologies 

adopted, including the DDM framework, the interface-captured DNS data set, and the ML 

algorithm adopted. In section 3, we discuss the results of ML-based drag closure for E-E 

formulation with two case studies. The paper is concluded in section 4. 

 

2. Methodology 

2.1. The data-driven modeling framework 

Figure 1 shows the overall schematic of the DDM framework established for the 

OpenFOAM-based Eulerian-Eulerian multiphase solver developed at HZDR. Data-driven and 

Machine Learning (ML) applications involve close interaction of raw data sources, top-level 

algorithms, and software. Among other challenges, the reproducibility of obtained results and 

models demands special approach when ML models are developed and deployed. The DDM 

framework proposed here aims to achieve reproducibility and extensibility by modularizing the 

data adaptation, pre-processing, integration to solver and post-processing of the results.  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Figure 1 Schematic of data-driven modeling framework for HZDR Euleraian-Eulerian 

multiphase solver. On the left hand side of the schematic (red box), the actions between 

each intermediate stage are automated using Snakemake [17].  

The proposed framework pipelines the data processing, model training and 

implementation to final deployment into HZDR maintained OpenFOAM multiphase solver. 

The main functional component of the framework is the Snakemake [17] workflow. The 

workflow is composed of various “jobs” representing logical steps in reading, pre-processing 

datasets, and training models (actions listed besides the arrows in the red box of Figure 1). 

Snakemake oversees correct execution and checks for proper file-structure in the input and 

output of each job as well. Under the scope of this work, the workflow is driven by DNS bubble 

tracking data set [5]. The bubble data structure is established by adapting and merging raw data 

sets. Then, to meet the modeling and application need, the quantities of interest and input 

features are extracted, and form the training/validation sets that are consumed in the model 

training stage. Finally, a model object along with the trained parameters are encapsulated into 

and binary file for later usage in prediction phase (right hand side flow in Figure 1). The only 

possible successful job result in this case would be the presence of all three files (2 input and 

1 output) in the respective directory. It makes top-level ML pipeline well defined and 

deterministic. Note that the DDM framework presented here can also combine various ML 

algorithms and models. For example, in additions to the ML interfacial force models 

implemented in this work, it currently also contains PyTorch model used for prediction of 

phenomena unrelated to the main topic of present paper. 

On the lower level, data pre-processing and model training are performed in Python. As 

for main ML framework, Tensorflow [18] and Keras [19] ML libraries are used in model setup, 

training and performance evaluation. The integration of model object into OpenFOAM solver 

environment (C++-based) is fulfilled using TensorFlow C API [20] (will be denoted as 

interface onward). In the case setup phase, the ML object acts as a plug-in that is passed into 

the interfacial force slot in the HZDR E-E multiphase solver. During the simulation, the model 

object is evoked by the interface in OpenFOAM solver [16] per step for on-the-fly query of 
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quantity of interest. For the drag force case in this work, the ML model receives cell input 

values (e.g. local 𝑅𝑒 and 𝐸𝑜) from the solver, predicts quantities of interest then returns it to 

the solver (e.g. 𝐶𝑑𝑅𝑒 for particular phase pair for which child class of dragModel is initialized). 

Modular structure of the OpenFOAM CFD library allows flexibly change solver sub-models. 

Lastly, the data-driven drag model is tested using the cases selected from the repository [21] 

dedicated for broad multiphase model development and testing. The description of the chosen 

case is provided in the next section. 

On the Figure 2, the structural component of the DDM framework called “Models” 

contains defined drag prediction Keras model called from top-level workflow and exported on 

final step. It can be easily extended with models from other frameworks, and they may be 

loaded separately in various environments. ”Data Structures” and “Data Adapters” components 

incorporate data loading, parsing, and filtering. “Data Adapters” allow to work with different 

raw data. They bridge particular file formats and allow to combine them into tables with “native” 

DDM framework formats implemented in “Data Structures” of Figure 3.  

 

 

Figure 2 Top-level Workflow and low-level components of the HZDR ML Framework 

 

Embedding of the Tensorflow binary model (for example, exported from 

BBTRKDragForceModel object on the Figure 2) for the purposes of inference demands further 

development of the new interfacial model. This new “ML” drag model implementing 

Tensorflow API must be deployed thereafter via an independent shared library. CFD solver 

reads the “controlDict” and loads corresponding *.so library which should provide a new 

interfacial model if it is called for drag inference in the simulation. 

2.2. The bubble tracking data set 

The high-fidelity bubble tracking data set is utilized for ML method-based interfacial 

force modeling tasks in this study. The data set is obtained from the state-of-the-art interface 

capturing DNS study on PWR-relevant subchannel domain by Fang et al. [5]. In this work, the 

level-set method [6] is deployed to explicitly track the advection of liquid-gas interface. The 

bubble tracking algorithm implemented in this work enables the access of the turbulence data 

in the vicinity of the interface. The data set adopted in this work is from the case “RE01”, 

whose Reynolds number based on the subchannel hydraulic diameter is 29,079 and wherein 
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17 bubbles are tracked. Such information is conducive to research on interfacial force of 

bubbles in the sense that physical quantities local to the bubble interfaces would be influential 

to, or as a result of gas-liquid interaction. Note that the local liquid velocity and rate-of-strain 

are obtained from the 6-element thick “liquid shell” surrounding the interface. Summary of 

data source DNS case is listed in Table 1. The data content of the bubble tracking data set is 

summarized in Table 2.  

 

 Table 1 Summary of bubble tracking data set source DNS case. 

Rod radius (𝑚𝑚) 4.57 
Pitch-to-diameter (P/D) ratio 1.38 

Domain size (𝑚𝑚3) 40.5 × 12.6 × 12.6 
Rod diameter (𝑚𝑚) 4.57 

Pitch-to-diameter ratio 1.38 
Number of bubbles 17 
Time steps size (𝑠) 6.3𝑒 − 5 

Total time steps 18816 
 

 

Table 2 Data contents of bubble tracking data set 

Bubble centroid position (𝑥𝑏 , 𝑦𝑏, 𝑧𝑏) 
Bubble/liquid velocity (𝑚/𝑠) (𝑢𝑏, 𝑣𝑏 , 𝑤𝑏)/(𝑢𝑙 , 𝑣𝑙 , 𝑤𝑙) 

Local liquid shear (1/𝑠) 𝛾�̇� 

Bubble equivalent radius (𝑚) 𝑟𝑏,𝑒𝑞𝑣 

Bubble mass (𝑘𝑔) 𝑚𝑏 
Bubble deformation f actor 𝛾𝑑𝑒𝑓  

 

2.3. The feedforward neural network 

In this work, the feedforward neural network (FNN) is adopted for the regression tasks. 

The FNNs are often considered as one of the simplest yet powerful neural network (NN) among 

NN families. The “feedforward” indicates the NN has no recurrent structure between neurons 

(often called nodes as well), and the information passing occurs in a uniform direction. Besides 

its simplicity, the Universal Approximation Theorem states that multi-layer FNN with at least 

one hidden layer, and appropriate smooth activation functions can approximate arbitrary 

functions and their derivatives [22]. This makes FNN an attractive option as a starting point of 

DDM framework implementation. 

Figure 3 shows the schematic of a densely connected FNN (neurons in a certain layer are 

fully connected to those in the vicinity layers). The FNN can be roughly divided into three 

parts: an input layer, hidden layers, and an output layer. Each layer consists of neurons, the 

basic functional component that performs functional transformation to the incoming 

information (weighted input from the previous layer plus the bias). The weights associated with 

the connection between neurons (𝑤𝑗) and the biases (𝑏𝑗) are the trainable parameters of an 

FNN. In the forward pass of the information, the input data (𝑥𝑖) received by the input layer 

undergoes a series of non-linear transformations towards the output layer, where the prediction 

on the quantities of interest (𝑦𝑜𝑢𝑡) is made. Mathematically, the forward propagation for a FNN 

with depth (number of hidden layers plus 1) 𝑁𝐿 can be expressed as: 
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 𝑥1 = 𝐴𝑓(𝑤1,𝑖𝑥𝑖 + 𝑏1) for the input layer (4) 

 𝑥𝑗 = 𝐴𝑓(𝑤𝑗𝑥𝑗−1 + 𝑏𝑗) for 𝑗 ≥ 2 𝑎𝑛𝑑 𝑗 < 𝑁𝐿 (5) 

 𝑦𝑜𝑢𝑡 = 𝐴𝑓(𝑤𝑁𝐿
𝑥𝑁𝐿−1 + 𝑏𝑁𝐿

) for the output layer (6) 

 𝐸 = 𝐿(𝑦𝑙𝑎𝑏𝑒𝑙, 𝑦𝑜𝑢𝑡) (7) 

 𝑤′𝑘𝑗 = 𝑤𝑘𝑗 − 𝜖𝑙(
𝜕𝐸

𝜕𝑤𝑘𝑗
) for 𝑘𝑡ℎ neuron in the 𝑗  𝑡ℎ layer  (8) 

 
𝑏′𝑗 = 𝑏𝑗 − 𝜖𝑙(

𝜕𝐸

𝜕𝑏𝑗
) 

(9) 

 

A loss function (𝐿) is used to evaluate the performance of the FNN by the discrepancies (or 

𝐸𝑜𝑢𝑡) between prediction and the training label (𝑦𝑙𝑎𝑏𝑒𝑙). Then, in the back propagation, the 

weights and biases of the network are adjusted according to the partial derivatives of the loss 

function with respect to each of the adjustable parameters, which are obtained by the chain rule.  

Note the selection of hyperparameters, such as number of hidden layers (depth), number 

of neurons per layer (width) and learning rate are subject to the optimization process in each 

problem.  Details of the FNN in the case studies will be listed. 
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Figure 3 Schematic of (A) a densely connected FNN. This example of FNN has 3 input 

nodes, 4 hidden layers, 5 hidden nodes per layer, and 1 output node, and  (B)a neuron. 

3. Case Study and Discussion 

In this section, the DDM framework is demonstrated via two case studies focusing on 

data-driven modeling of drag force in the bubbly flow. In the first problem, we verify our DDM 

methodology by training FNN using a designed problem and artificial data sets. Then, in the 

second problem study, we present the progress of development of a drag model for bubbly flow 

using the DNS bubble tracking data set. Details of problem formation and results will be 

discussed in the corresponding subsections.  

 

3.1. Benchmark Case: Bubble Drag Coefficient Model with Artificial Data 

In this case study, we demonstrate and verify the implementation of FNN in the DDM 

framework via a simple regression problem, where we aim to use FNN to emulate the drag 

correlation proposed by [23], as shown in eq.(10), in which the drag coefficient of a spherical 

bubble is correlated as the function of bubble Reynolds number: 

 

 
𝐶𝑑 =

24

𝑅𝑒𝑏𝑢𝑏
(1 + 0.15𝑅𝑒𝑏𝑢𝑏

0.687) ≈ 𝑓𝑛𝐹𝑁𝑁(𝑅𝑒𝑏𝑢𝑏) 
(10) 

 

where the 𝑓𝑛𝐹𝑁𝑁 denotes the approximation by FNN. The trained FNN will be used in place 

of the drag model in the baseline to examine the performance of FNN in the HZDR multiphase 

E-E framework against the results from the “parent” drag model in the same case setup.  

 Artificial data set is adopted to make the FNN emulate the drag correlation listed above. 

The artificial data set is generated by using known analytical mathematical relations or sampled 

from (complicated) correlations. Hence, there’s a clear expectation that the FNN models mimic 

the underlying data generator (correlations adopted). Due to this reason, artificial data 

combined with simplified problem setup is suitable to diagnose implementation of the DDM. 
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Secondly, the cost and human effort involved in generating the artificial data is low. Compared 

to the DNS data, whose amount is often limited, the low generation cost of artificial data 

ensures a sufficient supply of data required by FNN to achieve assigned tasks. 

 

3.1.1 The artificial data set 

 In this case study, the artificial data set will contain (𝑅𝑒𝑏, 𝐶𝑑)  sampled from the 

correlation by [23] to fulfill the specified task. An imaginary laminar pipe flow is devised for 

the calculation of the drag coefficient of spherical bubbles. The fluid and geometric properties 

are listed in Table 3. Assuming the liquid flow is upward and fully-developed, the velocity 

profile in the pipe can be expressed by:  

 

 
𝑢𝑙𝑖𝑞(𝑟) =

𝛻𝑃 + 𝜌𝑙𝑖𝑞𝑔

4𝜇𝑙𝑖𝑞
𝑅(1 −

𝑟2

𝑅2
)   

(11) 

 

Then, bubbles with random size uniformly sampled from range 𝑟𝑏𝑢𝑏 ∈ [1.25e − 4, 1.0e − 2] 

are initialized at random radial position (𝑟 ∈ [0, 𝑅]) in the channel. Further, we assume the 

bubbles are under steady state, and influence from other neighboring bubbles are excluded. 

With the local liquid velocity at radial position 𝑟 is known, the terminal velocity for a bubble 

rising in the laminar flow can be found by iteratively searching the bubble velocity (or 

essentially relative velocity) that would result in drag force on a par with the buoyancy 

experienced by the bubbles. Note that the search of terminal velocity started from static bubble 

state (i.e., 𝑢𝑏𝑢𝑏 = 0). Lastly, the bubble Reynolds number and the drag coefficient can be 

obtained using the following expressions: 

 

 
𝑅𝑒𝑏𝑢𝑏 =

𝜌𝑙𝑖𝑞𝑢𝑟𝑒𝑙𝐷𝑏𝑢𝑏

𝜇𝑙𝑖𝑞
 

(12) 

 
𝐹𝑑 =

1

2
𝜌𝑙𝑖𝑞𝑢

2
𝑟𝑒𝑙𝐶𝑑(𝜋𝑟𝑏𝑢𝑏

2 ) 
(13) 

 

The workflow and algorithm of artificial data generation are summarized in Figure 4. 

 

Table 3 Summary of the pipe flow case for artificial data generation 

radius of the pipe (m) 0.5 

liquid/gas density 𝜌𝑙𝑖𝑞/𝜌𝑔𝑎𝑠 (𝑘𝑔/𝑚3) 1000.0/1.0 

liquid/gas dynamic viscosity 𝜇𝑙𝑖𝑞/𝜇𝑔𝑎𝑠 

(𝑃𝑎 𝑠) 

1.0e − 3/1.0e − 5 

pressure gradient applied (𝑁/𝑚3) −9799.984 
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Figure 4 Workflow and algorithm for artificial data generation 

 

3.1.2 FNN setup and training 

 The FNN is trained by the artificial data set to capture the mathematical mapping 

between 𝑅𝑒𝑏𝑢𝑏 and 𝐶𝑑. Here, the 𝐿1 lost function (mean absolute error, MAE), is adopted to 

characterize the model performance against the label (𝐶𝑑). In order to achieve the balance 

between the variance and bias of the FNN model, the width and depth of the FNN is determined 

by observing the trend of MAE on testing set along the variation of the FNN size. Results are 

shown in Figure 5A. The convergence of the FNN performance can be observed with more 

than 4 hidden layers and 10 neurons per hidden layer. With the FNN’s structure established, 

we further investigated the performance of the FNN with different amounts of artificial data 

learned. Figure 5B shows the trend of model MAE on the test set after training by different 

amounts of data. It can be identified that the models’ MAE on the test set stabilized with more 

than 20,000 samples in the training set. The FNN model for the benchmark case is hence 

established. The summary of the FNN hyperparameters are listed in Table 4. 
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(A) 

 
(B) 

Figure 5 Variation of MAE on the test set along with (A) FNN width and depth, and 

(B) fixed FNN size (4 hidden layers, 10 hidden neurons) but varying number of 

samples learned 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 4 Summary of FNN hyperparameters for the benchmark case 

Activation function relu 

number of hidden layers 4 

number of neurons per hidden layer 10 

weight and bias initialization random uniform over [−0.05,0.05] 
different seeds for weights and biases 

optimization algorithm ADAM 

Training/validation ratio 80%/20% 

number of test data points 30,000 

 

3.1.3 Results and discussion 

 The DDM framework along with the FNN model trained by artificial data is deployed 

to the bubbly flow in a pipe case by [24] from OpenFOAM Foundation release tutorials set. 

The specification of the test case is given in Table 5. After the training phase, the FNN along 

with the weights and biases are exported and used in place of the drag model in the baseline. 

The FNN model is deployed for on-the-fly prediction of local (cell-wise) 𝐶𝑑 by receiving cell 

𝑅𝑒 from the solver on per time step basis. Results of void fraction distribution were averaged 

over 10 seconds after convergence in residue was observed. 

 

Table 5 Summary of the benchmark bubbly flow case 

Geometric specifications 

pipe radius (m) 1.905e − 2 

pipe length (m) 2e − 2 

Flow setup and fluid properties 

water/air density 𝜌𝑙𝑖𝑞/𝜌𝑔𝑎𝑠 (𝑘𝑔/𝑚3) 995.7/1.17 

water/air dynamic viscosity 𝜇𝑙𝑖𝑞/𝜇𝑔𝑎𝑠 

(𝑃𝑎 𝑠) 

7.99e − 4/1.868e − 5 

bubble diameter 𝐷𝑏𝑢𝑏(𝑚) 3.4e − 3 

Initial velocity and profiles (𝑚/𝑠) 0.916, uniform 

time step 𝛥𝑡 (𝑠) 3.0e − 3 

 

Figure 6 shows the comparison of the resulting radial void fraction distribution based 

on FNN and the reference drag model [23]. Despite the slight discrepancies in peaking value 

and the corresponding radial position for the max void fraction, the FNN model trained by 

artificial data gave the void distribution in accordance with the reference drag model.  This 

shows the FNN’s competence capturing the non-linear mapping between 𝐶𝑑 and 𝑅𝑒𝑏𝑢𝑏 of the 

artificial data, and the implementation of the DDM framework to the HZDR multiphase E-E 

framework has been verified [16]. To summarize, this benchmark case has shown the potential 

of applying ML models for sophisticated two-phase flow modeling problems. On the other 

hand, for ML modeling tasks based on high fidelity numerical and experimental data, the 

performance of ML models lies in the quality of training data (e.g., proper physical 

representation of input to quantity of interest), which will be discussed in the next section. 
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Figure 6 Comparison of void fraction distribution between reference drag force model 

[23], FNN drag model based on artificial data (this work), and the experimental data 

[24] 

 

3.2. Bubble Drag Coefficient Model Utilizing Bubble Tracking Data Set 

 

With the DDM framework verified in the benchmark problem, this part of the case 

study will utilize the bubble tracking data set [5] to formulate a ML drag model and discuss its 

performance. In order to extend the model's generalization ability across different geometric 

and flow setups, the non-dimensional groups derived from the raw data will be adopted as input 

physical features for the ML drag model. Besides the well-known dependence of drag 

coefficient on relative velocity (and thus  𝑅𝑒𝑏𝑢𝑏 ), the bubble Eötvös number (𝐸𝑜) is also 

considered to account for the effect of bubble shape on the drag force experienced. The 𝐸𝑜 in 

this case is derived from the bubble deformation factor, which is the ratio of the length of the 

semi-minor axis of deformed bubble to its equivalent radius. Note that the drag coefficient’s 

dependence on the 𝐸𝑜 can also be seen in the data pre-processing, which will be discussed in 

the later subsections. The equation form of the proposed problem can be written as: 

 

 𝐶𝑑 ≈ 𝑓𝑛𝐹𝑁𝑁 (𝑅𝑒𝑏𝑢𝑏, 𝐸𝑜) (14) 
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While the plan for deriving input features is rather clear, the bubble drag coefficient is 

not directly available from the transient data set. In the interface-captured DNS, the turbulent 

bubbly flow is always transient. This poses challenges on obtaining the bubbles’ drag 

coefficient using conventional definition under steady state. To tackle this, the following 

section will shed light on the derivation of bubble drag coefficient from the turbulent bubbly 

flow in order to train FNN via supervised learning. 

 

3.2.1 Pseudo-steady state data filtering from Frenet frame 

Three independent groups employed moving reference frame attached to the bubble 

and bubble-like bodies for modeling forces acting on a moving body in a fluid. Shew et al. [25] 

focused research efforts on small millimeter-sized bubbles, Fernandes et al. [26] investigated 

thick, slightly buoyant disks and Veldhuis et al. [27] built a model for light solid freely rising 

spheres. All models are based on Kirchhoff’s equations and address general complexity of the 

researched zigzag and the spiral motions. In present research co-moving (Frenet) reference 

frame allowed unified approach for both simpler bubble motions and more complex ones. 

Conventionally, the drag coefficient of a particle or bubble is computed from the force 

balance between drag and buoyancy after the object of interest reaches a steady state in a static 

fluid. However, such a definition is inapplicable in the case of turbulent bubbly flow, where 

bubbles and fluid dynamics show strong time-dependent characteristics when observed from 

fine time scales such as DNS time steps. In order to obtain the drag information from a transient 

flow phenomenon, data filtering based on pseudo-steady state assumption is proposed.  

In this work, the pseudo-steady state filtering is carried out in the Frenet frame, which 

is a coordinate anchored on a moving particle, as shown in Figure 7. The construction basis of 

the Frenet frame can be expressed as: 

 

 
𝑡 ⃑⃑ =  

𝑑𝑟 

𝑑𝑠
 

(15) 

 

�⃑�  =  

𝑑𝑡 
𝑑𝑠

|
𝑑𝑡 
𝑑𝑠|

 

(16) 

 �⃑� =  𝑡  ×  �⃑�  (17) 

 

where 𝑟  is the position vector with respect to the origin of the fixed reference frame. 𝑡  is the 

unit vector parallel to the direction of bubble motion and tangential to the trajectory 𝑠, �⃑�  

accounts for the rate of change of tangential vector along trajectory 𝑠, and �⃑�  is the unit vector 

orthogonal to both 𝑡  and �⃑� . 
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Figure 7 Schematic of the Frenet Frame attached to a spherical bubble with arbitrary 

motion 

 

The momentum equation along the direction of the construction basis can be derived 

from the Kirchhoff equations [27]: 

 

 
{1 +

1

2
(
𝜌𝑙𝑖𝑞

𝜌𝑔𝑎𝑠
)}𝑚𝑏𝑢𝑏

𝑑2𝑠

𝑑𝑡2
− {1 − (

𝜌𝑙𝑖𝑞

𝜌𝑔𝑎𝑠
)}𝑚𝑏𝑢𝑏𝑔𝑡 = 𝐹𝑡 

(18) 

 
{1 +

1

2
(
𝜌𝑙𝑖𝑞

𝜌𝑔𝑎𝑠
)}𝑚𝑏𝑢𝑏𝜅(

𝑑𝑠

𝑑𝑡
)2 − {1 − (

𝜌𝑙𝑖𝑞

𝜌𝑔𝑎𝑠
)}𝑚𝑏𝑢𝑏𝑔𝑛 = 𝐹𝑛 

(19) 

 −{1 − (
𝜌𝑙𝑖𝑞

𝜌𝑔𝑎𝑠
)}𝑚𝑏𝑢𝑏𝑔𝑏 = 𝐹𝑏 

(20) 

 
The first term on the left-hand side of eqs. (18) to (20) stands for the virtual mass force 

exerted on the direction of motion when the bubbles accelerate/decelerate. The second term in 

eqs. (18) and (19) represents the gravitational force experienced by the bubble. The term on 

the right-hand side of the equations stands for the summation of external forces exerted on the 

bubble. Here, we further focus on eq. due to our interest in the drag force. By definition, drag 

is the resistance along the direction of relative velocity of particles or bubbles in motion, or 

naturally 𝐹𝑑𝑟𝑎𝑔 𝑡 = −𝐹𝑡 under the Frenet Frame point of view. Therefore, to calculate the drag 

force in the turbulent bubbly flow, we applied time-averaging with a moving window of 2,000 

time steps on the raw data. Then, we filter the raw bubble tracking data set by the pseudo-

steady state, in which the bubbles are undergoing minimal acceleration. The metric adopted for 

pseudo-steady state filtering is the acceleration number [28, 29], as shown in the eq. (21). 

 

 
𝐴𝑐 =

|𝑢𝑙𝑖𝑞 − 𝑢𝑏𝑢𝑏|
2

𝐷𝑏𝑢𝑏

𝑑|𝑢𝑙𝑖𝑞 − 𝑢𝑏𝑢𝑏|
𝑑𝑡

 
(21) 
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Note that the bulk liquid velocity 𝑢𝑙𝑖𝑞 = (0.27,0.0,0.0) 𝑚/𝑠 is adopted for the relative velocity 

calculation in the formulation above. This is owing to the fact that the flow has reached a 

statistically steady state in the subchannel domain. Also, using mean liquid velocity instead of 

the one local to the interface excludes the influence of turbulence fluctuation. The raw data is 

filtered with the following criteria: (1) 𝐴𝑐 < 0.1, (2) 𝐶𝑑 < 3.0 and (3) 0.5 < 𝐸𝑜 < 3.25.   

 Figure 8 shows the distribution of the filtered data points (dots) on the 𝐶𝑑 − 𝑅𝑒𝑏𝑢𝑏 

plane along with the drag correlation by [28](curves). A cluster appeared around 𝐶𝑑~0.75, 

1000 < 𝑅𝑒𝑏𝑢𝑏 < 3000 followed by a tail extending into the high 𝐶𝑑 region. Also, it can be seen 

that the majority of filtered data points, in general, 𝐶𝑑 close to the correlation of [28]. However, 

the pattern with regard to 𝐸𝑜 appears to be different. As we further grouped the data points by 

its 𝐸𝑜, a clear dependence of 𝐶𝑑 − 𝑅𝑒𝑏𝑢𝑏 on 𝐸𝑜 showed up. We observed that as the 𝐸𝑜 of the 

bubbles grows, the drag coefficient is larger than those with lower 𝐸𝑜. This further confirms 

the need to add 𝐸𝑜  as one of the input features for the proposed regression problem. The 

distribution of the 𝐶𝑑 of the filtered data points is shown in Figure 9. 

 

 

Figure 8 Scatter plot of 𝑪𝒅 − 𝑹𝒆𝒃𝒖𝒃 of filtered data set (colored dots). Filtering criteria: 

𝑨𝒄 < 𝟎. 𝟏, 𝑪𝒅 < 𝟑. 𝟎, 𝟎. 𝟓 < 𝑬𝒐 < 𝟑. 𝟐𝟓. The filtered data set is further colored by the 

𝑬𝒐 and compared to the correlation by [28].   
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Figure 9 Distribution of the 𝑪𝒅 of the filtered data points. Criteria: 𝑨𝒄 < 𝟎. 𝟏, 𝑪𝒅 < 𝟑. 𝟎, 

𝟎. 𝟓 < 𝑬𝒐 < 𝟑. 𝟐𝟓.  

 

3.2.2 FNN model setup and training 

To capture the mapping between (𝑅𝑒𝑏𝑢𝑏, 𝐸𝑜)  and 𝐶𝑑 , a FNN with specifications 

summarized in Table 6 is trained by the filtered data points. Result of FNN regression is shown 

in Figure 10. The FNN showed reasonable performance capturing mapping between input and 

label in the range 𝐶𝑑 < 1.5. For the high drag coefficient range, the model tends to underpredict 

the drag coefficient. However, we should note that the model should be excluded from working 

in that range due to the insufficient data coverage of that range, which could result in high 

variance in the FNN’s prediction on the drag coefficient. This FNN model will be referred to 

as the “ML drag model” onward. 

 

Table 6 Summary of the FNN deployed for ML drag modeling 

Activation function relu 

number of hidden layers 2 

number of neurons per hidden layer 30 

weight and bias initialization random uniform over [−0.05,0.05] 
different seeds for weights and biases 

optimization algorithm ADAM 

Training/validation ratio 80%/20% 

number of test data points 7889 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Figure 10 Results of model regression on the filtered DNS bubble tracking data set. 

 

3.2.3 Results and discussion 

The ML drag model is deployed in place of the baseline drag model [23, 16, 31] as in 

the benchmark problem. The test case selected from the repository is the bubbly flow in a pipe 

emulating the experimental setup by Shawkat et al. [31] (referred to as the “S33” case onward). 

The S33 case is a monodisperse high Reynolds number vertical upward pipe flow and equipped 

with validation data for the gas phase fraction, liquid phase velocity and liquid phase turbulent 

fluctuations. The flow is assumed to be axi-symmetric, and the passage of the flow is 

represented by a wedge with 2.5° opening angle. Both phases enter the bottom of the domain 

and flow upward. Summary of the S33 case setup is listed in Table 7.  

 

Table 7 Summary of the “S33” case based on Shawkat [31] 

Geometric specifications 

pipe radius (m) 1e − 2 

pipe length (m) 9.56 

Flow setup and fluid properties 

water/air density 𝜌𝑙𝑖𝑞/𝜌𝑎𝑖𝑟 (𝑘𝑔/𝑚3) 997.0/1.205 

(Standard ambient temperature and 

pressure, SATP) 

water/air dynamic viscosity 𝜇𝑙𝑖𝑞/𝜇𝑎𝑖𝑟 (𝑃𝑎 𝑠) 8.9e − 4/1.82e − 5 

(SATP) 
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bubble diameter 𝐷𝑏𝑢𝑏(𝑚) 4.4e − 3 

Initial velocity and profiles (𝑚/𝑠) 0.78, uniform 

time step 𝛥𝑡 (𝑠) 1.0e − 3 

prescribed turbulence intensity 5% 

 

Figure 11 shows the comparison of streamwise velocity, turbulent kinetic energy (TKE) 

of liquid phase, and void fraction distribution from the experiment, ML drag model and the 

baseline, respectively. Note that hard limits were applied to the input bubble Reynolds number 

and output drag coefficient to prevent the ML drag model working in the extrapolation range 

and divergence of simulation due to unreasonable drag coefficient predictions. The resulting 

liquid velocity distribution was shown to be in close agreement with the baseline and the 

experimental measurement. On the other hand, overall underprediction of TKE is accompanied 

by the overprediction of the void fraction near wall. We currently attribute the observed 

discrepancies to two possible reasons. The first is the complicated interaction between the ML 

drag model to the other interfacial force closures. For instance, there’s possibility that the 

output of the ML drag model made the lift force model work out of the applicable range. 

Secondly, the large discrepancy in void fraction prediction implies necessity to improve 

model’s capability capturing near-wall flow behavior. One possible way to further investigate 

this is to re-examine necessity to expand input feature space of the FNN. For instance, distance 

to the wall and the local derivatives of liquid velocity may also be important features to 

characterize the drag force near wall.  
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(D) 

Figure 11 Comparison of resulting (A) streamwise velocity, (B) liquid phase TKE, (C) 

void fraction, and (D) residuals plot from case S33, ML drag model and the baseline. 

 

4. Conclusions 

 This work established a data-driven modeling (DDM) framework and explored the 

topic of leveraging high-fidelity data sets from the interface-captured direct numerical 

simulation of bubbly flow for the closures of the bubble drag. The implementation of the DDM 

framework on the HZDR multiphase Eulerian-Eulerian framework is verified via a benchmark 

problem, in which a simple feedforward neural network trained by artificial data set managed 

to emulate the non-linear drag correlation and delivered results of bubbly flow in accordance 

with the reference case.  

 Secondly, we focused on the development of a data-driven drag force model utilizing 

the bubble tracking data set. To obtain drag coefficients from the unsteady turbulent bubbly 

flow, pseudo-steady state filtering with transformation to the Frenet Frame is applied. The ML 

drag model is examined in the bubbly flow case based on Shawkat et al. [31]. Resulting 

distribution of liquid TKE and void fraction urges further investigation on the interaction 

between ML drag model and other interfacial force surrogates. 

 Here, the authors would like to highlight the necessity of application-oriented high-

fidelity simulation and data generation. Despite rapid growth in the capabilities of the 

computational systems, the DNS remains an expensive simulation that eludes from broad 

engineering applications. Hence, close collaboration between the simulation design and 

modelers is required to maximize the value of the DNS and the data sets. This work, as a 
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demonstration of leveraging data from DNS to inform the closure of engineering scale CFD 

simulation, would serve as an example for future works relevant to the topic. 
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Nomenclature 

Nomenclature Greek alphabet 

𝐴𝑓: activation function 𝛼𝑘: volumetric fraction occupied by phase 𝑘  

𝑏𝑗: biases associated with the neurons in the 

jth layer of the FNN 

𝜖𝑙: learning rate 

�⃑� : unit vector orthogonal to both 𝑡  and �⃑�  
(Frenet Frame basis) 

Γ𝑘: mass source term for phase 𝑘 

𝐷𝑏𝑢𝑏: bubble diameter 𝜇: dynamic viscosity 

𝐸 : Loss/error between label and FNN 

prediction 

𝜈: kinematic viscosity 

𝐹𝑏: buoyancy 𝜌𝑘: density of phase 𝑘 

𝐹𝑑: drag force 𝜎: surface tension coefficient 

𝐹𝑔: body force due to gravity 𝜏𝑘: stress tensor of phase 𝑘 

𝐿: loss function for the FNN  

𝑚𝑏𝑢𝑏: mass of the bubble  

𝑀𝑖𝑘 : momentum source for phase 𝑘  due to 

interfacial momentum exchange 

 

�⃑� : unit vector normal to the direction of 

particle/bubble motion accounting for rate of 

change of 𝑡  along the trajectory (Frenet 

Frame basis) 

 

𝑝𝑘: pressure of phase 𝑘  

𝑟: radial position in the pipe  

𝑟𝑏𝑢𝑏: radius of the bubble  

𝑟 : position vector with respect to the origin 

of the coordinate system 
 

𝑅: radius of the pipe  

𝑠 : trajectory of particle/bubble (Frenet 

Frame) 
 

𝑡: time  

𝑡 : unit vector tangential to the direction of 

particle/bubble motion (Frenet Frame basis) 
 

𝑢𝑘: velocity of phase 𝑘  

𝑤𝒋: weight matrix associated with neurons in 

the jth layer in the FNN 
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𝑥𝑗: output from the neurons in the jth layer of 

the FNN 
 

Dimensionless groups sub-, and superscripts 

𝑅𝑒𝑏𝑢𝑏 =
𝜌𝑙𝑖𝑞𝑢𝑟𝑒𝑙𝐷𝑏

𝜇𝑙𝑖𝑞
 : Bubble Reynolds 

number 

𝑋𝑙𝑖𝑞: quantity or properties of liquid phase 

𝐸𝑜 =
(𝜌𝑙𝑖𝑞−𝜌𝑔𝑎𝑠)𝑔𝐷𝑏𝑢𝑏

𝜎
: Eötvös number 𝑋𝑔𝑎𝑠: quantity or properties of gas phase 

𝐴𝑐 =
|𝑢𝑙𝑖𝑞−𝑢𝑎𝑖𝑟|

2

𝐷𝑏𝑢𝑏

𝑑|𝑢𝑙𝑖𝑞−𝑢𝑎𝑖𝑟|

𝑑𝑡

: Acceleration number 
𝑋𝑟𝑒𝑙: relative quantities 

 𝑋𝑏𝑢𝑏: quantities associated with bubbles 
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