
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Dual Graph Convolutional Network for Hyperspectral Image 
Classification With Limited Training Samples

He, X.; Chen, Y.; Ghamisi, P.;

Originally published:

March 2021

IEEE Transactions on Geoscience and Remote Sensing 60(2021), 5502418

DOI: https://doi.org/10.1109/TGRS.2021.3061088

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-33607

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1109/TGRS.2021.3061088
https://www.hzdr.de/publications/Publ-33607


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Dual Graph Convolutional Network for
Hyperspectral Image Classification With

Limited Training Samples
Xin He , Yushi Chen , Member, IEEE, and Pedram Ghamisi , Senior Member, IEEE

Abstract— Due to powerful feature extraction capability, con-
volutional neural networks (CNNs) have been widely used for
hyperspectral image (HSI) classification. However, because of a
large number of parameters that need to be trained, sufficient
training samples are usually required for deep CNN-based
methods. Unfortunately, limited training samples are a common
issue in the remote sensing community. In this study, a dual graph
convolutional network (DGCN) is proposed for the supervised
classification of HSI with limited training samples. The first
GCN fully extracts features existing in and among HSI samples,
while the second GCN utilizes label distribution learning, and
thus, it potentially reduces the number of required training
samples. The two GCNs are integrated through several iterations
to decrease interclass distances, which leads to a more accurate
classification step. Moreover, a new idea entitled multiscale
feature cutout is proposed as a regularization technique for
HSI classification (DGCN-M). Different from the regularization
methods (e.g., dropout and DropBlock), the proposed multiscale
feature cutout could randomly mask out multiscale region sizes in
a feature map, which further reduces the overfitting problem and
yields consistent improvement. Experimental results on the four
popular hyperspectral data sets (i.e., Salinas, Indian Pines, Pavia,
and Houston) indicate that the proposed method obtains good
classification performance compared to state-of-the-art methods,
which shows the potential of GCN for HSI classification.

Index Terms— Classification, convolutional neural network
(CNN), dual graph convolutional network (DGCN), hyperspectral
image (HSI), label distribution learning.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) often contain rich
spectral and spatial information [1], which makes such

data useful for a variety of applications, such as urban plan-
ning, vegetation monitoring, and target detection [2]. A basic
and important technique to process HSIs is classification,
which assigns a particular category to each pixel in the
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HSI. A large number of HSI classification methods have
been proposed, which considers spatial and spectral informa-
tion [3], [4]. Due to high data complexity and the limited
availability of training samples, the accurate classification of
HSI is still challenging.

In the early stage of HSI spectral–spatial classification, the
proposed methods obtained the spectral and spatial informa-
tion separately [5]. For example, approaches based on spatial
filters (e.g., morphological operators and low-rank representa-
tion) have been proven to be promising in extracting spatial
information from HSIs [6]. Among these filtering approaches,
one can mention, the morphological profiles (MPs) [7],
extended MPs (EMPs) [8], and extended multiattribute profiles
(EMAP) [9]. Then, the features extracted by those approaches
were combined with the results of spectral methods; among
them, the kernel-based methods have been widely used to clas-
sify HSI with limited training samples [10], [11]. Moreover,
other low-rank representation methods were introduced to
utilize a subspace learning technique, which aims to study the
underlying low-dimensional subspace structures, and, hence,
removed the redundancy of the image [12], [13]. For instance,
in [14], a low-rank structured prior method was exploited to
obtain the spatial dependences of the neighboring pixels. Then,
the spatial information was integrated with spectral informa-
tion extracted by a classifier to shape the final classification
map. However, due to the fact that HSIs have 3-D structures,
these separated frameworks cannot fully exploit the spectral
and spatial relations.

Many studies have focused on extracting joint
spectral–spatial information for HSI classification, mostly
based on 3-D structure-based methods to fully exploit the
3-D nature of hyperspectral data cubes [15]. A series of
methods have been developed based on the extension of
classical 2-D algorithms, such as the 3-D Gabor [16], 3-D
MP [17], and 3-D local binary pattern [18], as well as feature
fusion frameworks with the typical 3-D methods [19]. These
methods focus on designing different 3-D feature extraction
operators to extract spectral and spatial information from
different angles (i.e., morphology, local dependence, and
shape smoothness).

Most of the aforementioned HSI classification methods
do not deeply and automatically extract features. Recently,
deep learning-based methods have attracted lots of attention
and led to accurate classification, which can progressively
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and automatically extract discriminate and abstract features.
Among existing deep models, the convolutional neural
network (CNN) has been extensively explored for HSI
classification [20]. The existing CNN-based HSI classification
approaches can be roughly divided into three sets of
approaches: 1) methods that are based on the combination of
handcrafted features and the CNN-based extracted features;
2) methods that are purely based on the features extracted by
CNN; and 3) the CNN-related techniques.

At the beginning of CNN-based HSI classification, due to
the fact that the high dimensionality of HSIs usually causes the
problem of overfitting, handcrafted feature extraction and CNN
were combined to classify such data [21]. The first article that
applied CNN in HSI classification utilized the principal com-
ponent analysis as a preprocessing step to reduce the number
of features, and then, these features were fed into convolutional
layers to extract discriminative features [22]. A similar work
introduced the local discriminant embedding algorithm to
reduce the dimensions of HSI and generate spectral features,
and then, CNN extracted the spatial features [23]. Besides,
other handcrafted features based on multiscale covariance
maps [24], attribute profiles [25], and Gabor features [26] were
combined with deep features extracted by CNN to train the
model to produce final classification results.

With the development of machine learning techniques,
CNN can be used solely to extract features and classify
HSI without a need for other handcrafted feature extraction
methods. For example, in [27], deep CNN was utilized
to extract pixel-pair features and, hence, jointly exploited
spatial–spectral information to achieve better performance.
Zhang et al. [28] proposed a dual-channel CNN, which
combined spectral features extracted by 1-D-CNN with spatial
features extracted by 2-D-CNN. Xu et al. [29] presented
a unified spectral–spatial network to obtain discriminative
features for HSI classification. In addition, due to the fact that
the input of CNN is a 3-D patch, the straightforward way to
classify HSI is to utilize 3-D kernels to obtain features [30].
He et al. [31] proposed a 3-D deep CNN, which is able to
jointly extract spatial and spectral information by computing
multiscale features. Besides, the spectral–spatial residual
network (SSRN) explored by Zhong et al. [32] utilized
consecutive spectral and spatial residual blocks with different
sizes of 3-D convolutional kernels to extract spectral and
spatial features separately. However, the complexity of the
models, which involves 3-D convolutional kernels, is very
high. To partially address this issue, another extension of the
CNN was introduced based on the separable convolutions or
the separable filter learning [33], [34]. For example, the large
3-D convolutional kernels were decomposed into small
convolutional kernels to reduce computational complexity,
while it also achieved better performance [35].

Moreover, some methods related to original CNNs were
also proposed for HSI classification. For example, residual
networks and densely connected CNN were used to enhance
classification performance [36]–[39]. In addition, the cas-
caded recurrent neural network (RNN) was proposed for the
pixel-level HSI classification task [40]. Moreover, the capsule

network was introduced to achieve better results by utilizing
capsule units [41], [42].

Recently, several GCN-based methods have been proposed
for HSI supervised and semisupervised classification. Limited
labeled samples are a common issue in the practice of HSI
classification, and GCN-based semisupervised learning was
found to be a good solution [43]. Furthermore, in [44], a graph
attention network, which is a modification of GCN, was
proposed for HSI semisupervised classification. To explore the
spatial information of HSI, context-aware GCN and multiscale
GCN were proposed in [45] and [46], respectively. Besides,
different from the above semisupervised GCN strategies for
HSI classification, a nonlocal graph convolutional network
was explored, which took the whole HSI as input to learn
graph representations [47]. Very recently, a minibatch GCN
was proposed for HSI classification with low computational
cost [48]. In general, GCN-based methods have shown their
potential in HSI classification, but many practical issues, such
as limited training samples, still need to be addressed.

Due to the fact that the manual annotation of a large number
of training samples is laborious and time-demanding in real
scenarios, the number of training samples is usually very
limited. Especially, this issue becomes more serious when it
comes to HSIs. To address this problem, one possible solu-
tion aims to incorporate unlabeled samples in semisupervised
hyperspectral classification [49]. Other ways including feature
extraction, feature selection, or sparse learning have also been
investigated to overcome the limitation of labeled samples
for HSI classification [50], [51]. Therefore, we address this
major challenge in HSI classification by introducing dual
graph methods with only five training samples per class.

Different from the above GCN methods, in this article,
the dual graph convolutional network (DGCN) is proposed,
which explicitly calculates the similarities among samples
and integrates label distribution learning into graph learning.
Especially, this article not only captures relations among
samples but also obtains label distribution relations among
samples. In addition, the style of capturing the relations
among samples is more intuitive for DGCN. For example,
edges in the proposed DGCN are defined and updated
by calculating similarities between nodes, which focuses
more on the relations in the form of similarities between
samples. Specifically, the spectral–spatial information is
extracted by CNN without any preprocessing step to preserve
discriminative features. Since CNN has a powerful capability
for feature extraction, it is widely used in HSI processing.
However, CNN extracts the features of an individual sample.
Then, the learned features are fed into the proposed DGCN to
capture the relationships among samples. Moreover, drop edge
is used in the proposed DGCN (i.e., DGCN-D) for alleviating
the overfitting problem in the case of the limited sample
size [52]. Besides, multiscale feature cutout is proposed as a
regularization method for DGCN (i.e., DGCN-M) to further
improve the performance of the proposed classifier. It should
be noted that this work is not a simple adaption of GCN for
HSI classification. Instead, this work takes a step further to
develop a novel classifier to accurately address the challenge
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Fig. 1. Framework of the proposed DGCN, which integrates the features of the point graph and distribution graph. As an example, three samples of HSI
are illustrated. The sample features are extracted by CNN. Then, these features are fed into the dual graph to further learn discriminative features finalize the
classification task. The green arrow and red arrow represent the process of interacting features at each time L .

of the imbalance between the limited training samples and
high dimensionality for HSI classification. In summary,
the main contributions of this study are listed as follows.

1) A DGCN, which is a hybrid network of CNN and two
graph networks (i.e., the point graph and the distribution
graph), is proposed for HSI classification with limited
training samples.

2) Instead of simply applying GCN to classify HSI,
the point graph aims to fully explore the relationships
among samples, and the distribution graph utilizes label
distribution learning to obtain high correlation features
among samples with the same label. The two graphs are
integrated with each other to fully extract features among
training samples; thus, DGCN reduces the number of
needed training samples.

3) In order to mitigate the overfitting issue caused by lim-
ited HSI training samples, the drop edge is investigated
in the proposed DGCN.

4) To further improve the HSI classification results, moti-
vated by the regularization method called cutout, we pro-
pose a novel technique by improving the cutout with
the multiscale operation to feature maps in CNN; this
method increases the generalization capability of the
proposed DGCN.

The rest of this article is organized as follows. Section II
introduces the proposed methods, including DGCN, DGCN-
D, and DGCN-M in detail. Section III presents comprehensive
experiments, including data description, results, and analysis
of the proposed methods. Finally, Section IV summarizes the
main concluding remarks.

II. PROPOSED METHODS

This section provides detailed information about the pro-
posed methods termed DGCN, DGCN with drop edge
(DGCN-D), and DGCN with multiscale feature cutout
(DGCN-M).

A. DGCN for HSI Classification

The proposed DGCN is composed of two graphs, named
point graph and distribution graph. The two graphs aim to
capture the relationships among samples. Fig. 1 shows an
overview of DGCN for HSI classification, which includes three
main parts (i.e., data preprocessing, CNN feature extraction,
and dual graph learning). Detailed information on these three

parts is described below. Algorithm 1 describes the whole
process of DGCN for HSI classification.

Let I ∈ RH×W×B be the HSI, where H , W , and B
indicate the spatial height, spatial width, and band number of
spectral signatures, respectively. To extract the spectral–spatial
information from I , I is first processed for data preparation.
Each pixel i in I forms a fixed square box, in which i is the
center pixel and a fixed number of pixels around i are regarded
as the adjacent pixels. Thus, the HSI eventually generates a
total number of H W cubes, which represents a sample set
I � = {I �

1, I �
2, . . . , I �

H W }. Here, I �
i ∈ RS×S×B corresponds to the

sample of the pixel i , and S × S indicates the spatial size. The
label set y = {y1, y2, . . . , yH W } represents the corresponding
labels of I �, where yi ∈ {1, 2, . . . , n} is the center pixel of
each sample, and n is the total classes of the ground truth.

Then, the samples are fed into CNN to extract spectral–
spatial features in the second part. The CNN is composed of
multiple layers, including the convolutional layer, the max-
pooling layer, the Leaky-ReLU operation, and the fully con-
nected (FC) layer. Among them, the convolutional layer is the
main element, which can be described as follows:

f xy
i j =

�
o

r�
p=1

s�
q=1

w
qt
i jm f (x+q)(y+t)

(i−1)m + bi j (1)

where f xy
i j indicates the output variable in the j th feature map

at the i th layer, x and y represent the corresponding positions
in the feature map, r and s are the kernel size, q and t are
the kernel indices, m indicates the feature map index, and b
is the bias.

CNN extracts features from different HSI samples inde-
pendently without considering the relationships of different
samples, while the proposed DGCN, including the point graph
and the distribution graph, solves the disadvantages of CNN
by exploring the relationships (i.e., label information and
feature information) among samples. Third, DGCN passes the
spectral–spatial features extracted by CNN to the subsequent
dual graph learning. In the graph learning, the important ele-
ments for constructing each graph can be defined as G(V , E),
where V = {vk |∀k ∈ {1, . . . , N}} is the set of nodes, E =
{ek,v |∀k, v ∈ {1, . . . , N}} is the set of edges, and N is the num-
ber of nodes in graph G. Besides, the core element of GCN
is convolution; different from CNN, the convolution of GCN
is represented in the form of nodes, which is defined in the
spectral domain [53], [54]. The updated node representation
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Fig. 2. Detailed process of the proposed DGCN that contains four stages.

by the convolution in GCN is defined as follows:
ĥc+1

k = 1

degk

�
v∈Nk

hc
v (2)

hc+1
k = σ

�
U cĥc+1

k

�
(3)

where hc+1
k indicates the feature of node k at layer c+1. Node

k connected to other nodes in the graph can be represented
as Nk , degree of the node k forms degk = |Nk |, σ indicates
the nonlinearity operation, and U c ∈ R indicates the learned
parameters.

The proposed DGCN contains two important graphs named
point graph (G p

L) and distribution graph (Gd
L). Specially, G p

L
calculates the similarities among the output features of CNN,
and Gd

L aims to process the relationships of label distribution
among I �. To integrate the output features (i.e., nodes and
edges) of G p

L and Gd
L , at each time L (L > 0), G p

L generates
Gd

L by inserting the relationships of different samples into Gd
L ,

and Gd
L refines G p

L by delivering the relationships of label
distribution from I �, where L is the number of cycles. When
L = 0, the two graphs initialize the nodes and edges, and when
L > 0, the two graphs fuse their extracted features (i.e., nodes
and edges) with each other. The detailed introduction is shown
in Fig. 2. The dual graph learning in the proposed DGCN
contains four stages, which can be summarized as follows four
steps.

First, the point graph can be described as G p
L = (V p

L , E p
L ),

which consists of the node feature set V p
L = {v p

L ,i |∀i ∈
{1, . . . , N}} and the edge feature set E p

L = e p
L ,i j |∀i, j ∈

{1, . . . , N}. When L = 0, the output features of the second
FC layer in CNN are used to initialize the node feature
set V p

L in G p
L . The output features of the first FC layer in

CNN are utilized to initialize the edge feature set E p
L by

computing samples’ similarities among node features. Edge

Algorithm 1 DGCN for HSI Classification
1. begin
2. initialize the number of training samples ntrain, fixed

square length S, cyclic time L .
3. for each pixel:
4. select the spatial size S × S of each pixel, given

the labels of each pixel, add them to the sample
set I � and the label set y, respectively.

5. split I � and y into training set according to ntrain.
6. Construct DGCN (If L = 0):
7. initialize the point graph (G p

L):
8. for each sample I �

i in the training set:
9. feed I �

i into CNN with learned parameters w and b.
10. initialize node features V p

L of G p
L according to the

output features of CNN from I �.
11. initialize edge features E p

L of G p
L among I �, for

each edge feature ep
L ,i j between I �

i and I �
j in E p

L :
12. ep

L ,i j = fep
L
((v

p
L ,i − v

p
L , j )

2)

13. initialize the distribution graph (Gd
L):

14. initialize node features V d
L of Gd

L according to
the label distribution information among samples.

15. initialize edge features Ed
L of Gd

L according to the
V d

L , for each edge feature ed
L ,i j between I �

i and
I �

j in Ed
L :

16. ed
L ,i j = f

ed
L
((vd

L ,i − vd
L , j )

2)

17. Integrate G p
L with Gd

L (If L > 0):
18. for each cyclic time L:
19. combine each node V p

L in G p
L with Ed

L in Gd
L .

20. compute each edge in E p
L according to the previous

E p
L−1 in G p

L .
21. combine each node V d

L in Gd
L with

E p
L in G p

L .
22. compute each edge in Ed

L according to the previous
Ed

L−1 in Gd
L .

23. predict each node in V p
L in G p

L .
24. end

features E p
L = {e p

L ,i j |∀i, j ∈ {1, . . . , N}} are constructed
using neighboring nodes. Here, each edge feature stands for
the similarities between different HSI samples, which can be
defined as follows:

e p
L ,i j =

⎧⎨
⎩

fep
L

��
v

p
L ,i − v

p
L , j

�2
	
, if L = 0,

fep
L

��
v

p
L ,i − v

p
L , j

�2
	

· e p
L−1,i j , if L > 0

(4)

where v
p
L ,i in V p

L represents the output feature of CNN from
different I �

i ’s. Especially, when L = 0, v
p
L ,i represents the

output feature of the first FC layer, while, when L > 0, v
p
L ,i

is the output feature of the second FC layer in CNN. fep
L

indicates a transform network, which includes two blocks and
a convolution layer, and each block contains a convolution
layer, a batch normalization (BN) layer, and a Leaky-ReLU
operation. Here, e p

L ,i j is updated not only by the current feature
but also the previous edge feature e p

L−1,i j .
Second, the distribution graph is next to be constructed,

which is described as Gd
L = (V d

L , Ed
L). Here, V d

L = vd
L ,i |∀i ∈

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2021 at 10:24:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: DGCN FOR HSI CLASSIFICATION WITH LIMITED TRAINING SAMPLES 5

{1, . . . , N} and Ed
L = ed

L ,i j |∀i, j ∈ {1, . . . , N} indicate the set
of node features and edge features in Gd

L , respectively. This
process aims to obtain V d

L , where the order of node features
V d

L follows the position order in G p
L , which can be described

through (5). When L = 0, yi and y j are the labels of samples
I �
i and I �

j . δ(·) and || indicate the concatenation operator and
the Kronecker delta function, receptivity

vd
L ,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

||N
j=1δ

�
yi , y j

�
, if I �

i is trainng sample

and L = 0,�
1

N K
, . . . ,

1

N K

�
, if I �

i is not trainng sample

and L = 0,

fvd
L

�||N
j=1e p

L ,i j , v
d
L−1,i

�
, if L > 0.

(5)

When L > 0, e p
L ,i j in E p

L is obtained by the last step, and fvd
L

is the aggregated network MLP1, which contains an FC layer
and a Leaky-ReLU operation.

Third, Ed
L in Gd

L is calculated using (6), and Ed
L represents

the distribution similarities among V d
L . Each edge feature rep-

resents the relationship of the current node to all other nodes
in a one-versus-N manner. Here, fed

L
is an MLP2 composed of

two convolutional blocks and a sigmoid layer for computing
ed

L ,i j in Ed
L

ed
L ,i j =

⎧⎨
⎩

fed
L

��
vd

L ,i − vd
L , j

�2
	
, if L = 0,

fed
L

��
vd

L−1,i − vd
L−1, j

�2
	
.ed

L−1,i j , if L > 0.
(6)

Finally, at the end of each time, in order to merge all the
extracted features (i.e., nodes and edge information) of the two
graphs, the generated Ed

L in Gd
L flows back into G p

L to generate
a new node set V d

L in Gd
L , where each v

p
L ,i in V d

L represents a
new node. v

p
L ,i is obtained by aggregating all the node features

through the last step with ed
L ,i j , which is according to the

following formula:

v
p
L ,i = fv p

L

⎛
⎝ N�

j=1

�
ed

L ,i j · v
p
L−1, j

�
, v

p
L−1,i

⎞
⎠ (7)

where fv p
L

indicates a concatenated network, which includes
two blocks to update v

p
L ,i . Once L is finalized at this step, v

p
L ,i

could combine the features (i.e., nodes and edges) extracted
by the point graph with the information obtained by the
distribution graph. Thus, the above four stages are repeated
several times L to fuse G p

L with Gd
L sufficiently.

The loss function of the proposed DGCN contains two
important elements, named the point loss Lossp

L and the
distribution loss Lossd

L , which are defined as follows:
Lossp

L = LossCE(P(ŷi |I i), yi) (8)

Lossd
L = LossCE

(
Softmax

(
N∑
1

ed
L ,i j ·one−hot

(
y j

))
, yi

)
(9)

where LossCE represents the cross-entropy loss function [55],
P(ŷi | xi ) is the model probability predictions of the sample
Ii , and yi is the corresponding label. ed

L ,i j indicates the edge
feature in Gd

l at time L.

B. DGCN-D for HSI Classification

For the classification of HSIs using deep-learning-based
approaches, there exist a huge number of parameters. When
the number of training samples is limited, the performance
of the network can be downgraded due to the overfitting
problem. Here, in order to alleviate this issue and strengthen
the generalization ability using small sample size, DGCN-D is
introduced for the proposed DGCN, which aims to randomly
drop a number of edges from the input graph at each training
time. The whole process of DGCN for HSI classification is
described in Algorithm 2.

DGCN-D is a flexible and effective method, which ran-
domly drops out a certain rate of edges in the graph during
the training process. Moreover, DGCN-D can be considered
as the message passing reducer, which makes node connec-
tions sparser by dropping a certain number of edges, and
thus, DGCN could go deeper than CNN by addressing the
overfitting issue for HSI classification.

Algorithm 2 DGCN-D for HSI Classification
input:

sample set I � and corresponding label set y of HSI.
output:

predict labels of test samples
1. initialize cyclic time L and drop edges with probability
p.
2. Construct DGCN (If L = 0):
3. initialize the point graph (G p

L):
4. for each sample I �

i in the training set:
5. feed I �

i into CNN with learned parameters w and b.
6. initialize node features V p

L of G p
L according to the

output features of CNN from I �.
7. initialize edge features E p

L of G p
L among I �, for each

edge feature ep
L ,i j between I �

i and I �
j in E p

L :
8. ep

L ,i j = fep
L
((v

p
L ,i − v

p
L , j)

2)

9. for each edge feature ep
L ,i j in E p

L :
10. randomly set E p

L to be zeros with p
11. initialize the distribution graph (Gd

L):
12. initialize node features V d

L of Gd
L according to

the label distribution information among samples.
13. initialize edge features Ed

L of Gd
L according to the

V d
L , for each edge feature ed

L ,i j between I �
i and

I �
j in Ed

L :
14. ed

L ,i j = f
ed

L
((vd

L ,i − vd
L , j )

2)

15. for each edge feature ed
L ,i j in Ed

L :
16. randomly set Ed

L to be zeros with p
17. Integrate G p

L with Gd
L (If L > 0):

18. for each cyclic time L:
19. combine each node V p

L in G p
L with Ed

L in Gd
L .

20. compute each edge in E p
L according to the previous

E p
L−1 in G p

L .
21. combine each node V d

L in Gd
L with E p

L in G p
L .

22. compute each edge in Ed
L according to the previous

Ed
L−1 in Gd

L .
23. predict each node in V p

L in G p
L .
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Here, the proposed DGCN-D can be defined by (10). A ∈
RM×M represents the adjacency matrix in the graph; Ai, j is
equal to the weight of the edge ei, j between nodes i and j if
vi and v j are connected or Ai, j = 0 otherwise. The adjacency
matrix of A with drop edge can be represented as

Adrop = A − A� (10)

where V and p indicate the number of edges and dropping
rate, respectively. A� stands for a sparse matrix expanded by
a random subset of size Vp from E . In order to validate the
effectiveness of DGCN-D for HSI classification, the detailed
discussion of p is shown in Section III.

The updated node representations by the convolution in
DGCN-D are defined as follows:

hc+1
k = σ

�
ÂdropW (c)

�
v∈Nk

hc
v

�
(11)

Âdrop = D̂−1/2
�

Adrop + I
�

D̂−1/2 (12)

where hc+1
k is the feature of the node k at layer c + 1, D̂

represents the corresponding degree matrix of A + I, Âdrop

indicates the renormalization of the adjacency matrix with
drop edge, and W (l) stands for the filter matrix at the cth
layer.

C. DGCN-M for HSI Classification

In order to address the overfitting issue and further improve
the classification performance, a new regularization technique
called multiscale feature cutout with DGCN (DGCN-M) is
proposed, which is inspired by the cutout.

The cutout is first introduced by DeVriesl and Taylor [56].
The core idea of the cutout is to randomly drop out con-
tiguous square regions of the input. These regions could
propagate through the back-propagation algorithm. Inspired by
the cutout, this article proposes a new regularization method
to generalize the model well for HSI classification without
increasing the complexity of the model. Algorithm 3 describes
the whole process of DGCN-M for HSI classification.

Multiscale feature cutout improves model performance by
producing multiscale zero masks of feature maps at each
training time. Multiscale feature cutout is based on applying
cutout to feature maps, which is named feature cutout with
DGCN (DGCN-C). The difference between the cutout and
multiscale feature cutout is that the proposed multiscale feature
cutout focuses on the feature maps of the convolutional layer
since the activation units in convolutional layers are spatially
correlated and the former convolutional layer is important
for the subsequent steps of feature extraction. Therefore, this
article mainly focuses on the feature maps produced by the
first convolutional layer. In addition, compared to another
frequently used regularization method (i.e., dropout), the pro-
posed regularization method randomly masks out a regular
square from feature maps instead of individual pixels. Besides,
compared to DropBlock [57], multiscale feature cutout pro-
duces feature maps with multiscale cutout region sizes, and
it is easy to implement. The cutout region size is set to be
more than half of the input that, sometimes, the region size

Algorithm 3 DGCN-M for HSI Classification
input:

sample set I � and corresponding label set y of HSI.
output:

predict labels of test samples
1. initialize cyclic time L, the size of the feature cutout

region r , and feature map cutting out rate m
2. Construct DGCN (If L = 0):
3. initialize the point graph (G p

L):
4. for each sample I �

i in the training set:
5. feed I �

i into CNN with learned parameters w and b.
6. for each convolutional layer in CNN:
7. randomly select feature maps with probability m.
8. for each selected feature
9. apply twice zero mask with size r to a random

location
10. initialize node features V p

L of G p
L according to

the output features of CNN from I �.
11. initialize edge features E p

L of G p
L among I �, for

each edge feature ep
L ,i j between I �

i and I �
j in E p

L :
12. ep

L ,i j = fep
L
((v

p
L ,i − v

p
L , j )

2)

13. initialize the distribution graph (Gd
L):

14. initialize node features V d
L of Gd

L according to
the label distribution information among samples.

15. initialize edge features Ed
L of Gd

L according to the
V d

L , for each edge feature ed
L ,i j between I �

i and
I �

j in Ed
L :

16. ed
L ,i j = f

ed
L
((vd

L ,i − vd
L , j )

2)

17. Integrate G p
L with Gd

L (If L > 0):
18. for each cyclic time L:
19. combine each node V p

L in G p
L with Ed

L in Gd
L .

20. compute each edge in E p
L according to the previous

E p
L−1 in G p

L .
21. combine each node V d

L in Gd
L with E p

L in G p
L .

22. compute each edge in Ed
L according to the previous

Ed
L−1 in Gd

L .
23. predict each node in V p

L in G p
L .

might not be fully contained inside the feature map. Thus,
feature maps with various levels of region sizes are generated,
and multiscale feature cutout further reduces the overfitting
problem. Fig. 3 illustrates the differences between several
methods intuitively (i.e., DGCN with DropBlock, DGCN-C,
and DGCN-M).

There are three main parameters involved in multiscale fea-
ture cutout, including the cutout region size r , mask probability
m, and the number of scales s. Especially, the region size r
controls the shape of the zero masks of the input feature map.

The choice of m defines the number of feature maps
on which cutout should be applied. The value of s is the
number of scales. First, in the process of multiscale feature
cutout, s pixel coordinates are randomly selected in the
feature map. Second, the region size r is placed around each
pixel coordinate location. Instead of applying cutout to each
feature map, the mask probability m makes the model receive
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Fig. 3. Comparison of feature maps with different methods on the Indian Pines data set. (a) Original feature map. (b) Corresponding features map with
Dropblock. (c) First sample of DGCN with feature cutout. (d) Second sample of DGCN with feature cutout. (e) Corresponding features map with multiscale
feature cutout.

unmodified feature maps sometimes to make the model more
robust. Detailed discussions on r , m, and s can be found
in Section III-C. These parameters can substantially influence
the final classification performance of DGCN-M for HSI
classification.

III. EXPERIMENTS

In this section, the performance of the proposed methods is
verified on the four benchmark data sets.

A. Experimental Data Description

The four widely used data sets, including the Salinas,
Indian Pines, Pavia, and Houston data sets, are introduced
in the following. The color composite image, ground-truth
classification map, and detailed information on the number
of each class are presented in Fig. 4.

1) Salinas Data Set: This HSI data set was captured by the
AVIRIS sensor over Salinas Valley. It contains 512 × 217 pix-
els, and the spatial resolution is 3.7 m. The 204 spectral bands
are preserved in the range of 0.2–2.4 μm after the removal of
several spectral bands (108–112, 154–167, and 224) due to the
noise effect. The ground truth contains 16 land-cover types.

2) Indian Pines Data Set: This data set was captured by the
Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) in
June 1992. The data set consists of 145 × 145 pixels with
220 spectral bands in the wavelength ranging from 0.2 to
2.4 0.μm. After removing water absorption and low signal-
to-noise ratio bands (bands 104–108, 150–163, and 220),
200 bands are used for experiments. The corresponding ground
truth contains 16 classes of interest.

3) Pavia Data Set: It was acquired by the Reflective Optics
Spectrographic Image System (ROSIS-3) sensor, which con-
sists of 115 spectral bands with wavelength ranging from
0.43 to 0.86 μm. Its spatial resolution is 1.3 m, and its
image size is 610 × 340. The 12 noisy spectral bands have
been removed due to the low signal-to-noise ratio, leading
to 103 bands. Nine classes of land covers are used in the
experiments.

4) Houston Data Set: It was acquired on February 16, 2017,
by the CASI-1500 over the area of the University of Houston,
Houston, TX, USA, which is available from the 2018 IEEE
GRSS Data Fusion Contest. The training portion of the data
set consists of 601 ×2384 pixels with 50 bands in the range

TABLE I

ARCHITECTURE OF THE CONVOLUTION NEURAL NETWORK

of 0.38–1.05 μm and a ground-sampling distance of 1 m. The
ground truth contains 20 land cover types.

B. Experimental Design

In the experiments, for all the data sets, the input data
are normalized into [−0.5, 0.5]. The 27 × 27 neighbors of
each pixel are used as the input to the models. In addition,
the training samples are randomly chosen from all labeled
samples (i.e., five, six, and seven training samples per each
class).

To evaluate the effectiveness of the proposed method
DGCN, several existing methods are used for compar-
isons, including SVM with EMPs (EMPs-SVM) [8], CNN,
CNN with EMPs (EMP-CNN) [58], hybrid spectral CNN
(HySN) [59], and GCN [48]. Besides, since this article focuses
on exploiting the issue of a limited number of training samples
for HSI classification, Siamese CNN (SCNN), which is proven
to be an effective approach to handle such an issue, is also
considered in the experiments [60].

The CNN used in the proposed network contains four
stacked blocks; each block consists of a 3 × 3 convolutional
layer, BN layer, Leaky-ReLU operation with the size of 0.2,
and max-pooling layer. The third and fourth blocks are fol-
lowed by a BN layer and an FC layer. The output of the
first FC layer is used to initialize edge features in the point
graph, and the second FC layer is used to initialize the node
features in the point graph. The architecture of CNN is shown
in Table I.

Authorized licensed use limited to: IEEE Customer. Downloaded on March 11,2021 at 10:24:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Color composite image, ground truth, and detailed information on the number of classes for four publicly available data sets (Salinas, Indian Pines,
Pavia, and Houston).

During the training procedure, the total number of iterations
is set to 500, 500, 300, and 500 for the Salinas, Indian Pines,

Pavia, and Houston data sets, respectively. Besides, the method
of minibatch was adopted, which is set to 5, 5, 10, and 5
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TABLE II

PARAMETERS OF DIFFERENT METHODS TAKEN ON THE FOUR DATA SETS

Fig. 5. Results of DGCN with different window sizes.

for the Salinas, Indian Pines, Pavia, and Houston data sets,
respectively. The detailed information of parameters is shown
in Table II.

To quantitatively evaluate all the methods, overall accuracy
(OA), average accuracy (AA), kappa coefficient (K ), and
class-specific accuracy are utilized as the evaluation metrics.

C. Parameter Settings

There are several important parameters that influence the
final classification accuracies. The parameters include the drop
edges with probability p for DGCN-D and the cutout size r
and mask probability m for the DGCN-M. For other para-
meters, such as the window size, we only provide empirical
settings.

1) Influence of Window Size: To validate the influences of
DGCN with different spatial window sizes (i.e., 21 × 21,
23 × 23, 25 × 25, 27 × 27, and 29 × 29), the results of
DGCN on the four data sets are shown in Fig. 5. As shown
in Fig. 5, DGCN obtains the best performance concerning the
23 × 23 window size on the Salinas and Houston data sets
and 25 × 25 window size on the Indian Pines and Pavia data
sets. In the experiments, to give a fair comparison with other
methods, the window size is set to 27 × 27 for all the exper-
iments, which follows the same settings described in [58].

2) Analysis of Dropping Rates p: For DGCN-D, the prob-
ability p controls the certain rate of edges in the graph for
each iteration. The performance sensitivity of DGCN-D with

respect to different values of probability p is investigated.
The grid search strategy is chosen to find the optimal value
of p, which varies from 0.1 to 0.9. The related experimental
results are provided in Fig. 6 for all four data sets with five
training samples per each class. Compared to DGCN, it can be
observed that DGCN-D consistently promotes the performance
with small values of p on all the data sets, but, when the
value of p reaches a certain value, it will decrease the final
testing accuracy. For example, the values of p ranging from
0.1 to 0.3 achieve better performance on the Salinas data set
compared to DGCN. It proves that DGCN-D can alleviate the
risk of overfitting problems with the proper value. According
to Fig. 6, with reference to the OA results, the value of p is
set to 0.2, 0.5, 0.3, and 0.7 for the Salinas, Indian Pines, Pavia,
and Houston data sets, respectively.

3) Analysis of the Cutout Region r , Mask Probability m,
and Number of Scales s: Experiments are conducted on the
four data sets, and multiscale feature cutout is applied after
the first convolutional layer. Here, there are three important
hyperparameters in DGCN-M, including cutout region size r ,
mask probability m, and number of scales s. Especially, r
defines how many square regions of the feature maps should
randomly be masked out and set to 0 during training. Here,
the square patches (i.e., 3 × 3, 6 × 6, 9 × 9, 15 × 15,
18 × 18, and 24 × 24) are selected to search for the best
region r for DGCN-M. Besides, m is the probability, which
defines the number of feature maps on which cutout should
be applied. The value of m is selected from {0.1, 0.3, 0.5, 0.7,
0.9}. A larger value of r implies that more locations in the
feature maps are set to 0. In addition, the value of s is the
number of scales. In the experiment, to analyze the influences
of r and m, s is fixed. All the OA results as a function of r
and m with different data sets are shown in Fig. 7. For the
case of s, the values of r and m are set to the optimal values
to verify the influence of the number of s. Fig. 8 displays the
classification results with respect to different values of s with
200 training samples for all the data sets. From Fig. 7, it can
be seen that OA follows a parabolic trend; when the value
of r is about half of the input, accuracy reaches an optimal
point, after which OA decreases with larger values of r and m.
It indicates that the proper values of r and m are important for
HSI classification. Therefore, r and m are set to the optimal
value for different data sets (i.e., the values of r and m are
18 and 0.5 for the Salinas data set, r is 15 and m is 0.7 for
the Indian Pines data set, r is set to 15 and m is set to 0.5 for
the Pavia data set, and r is set to 15 and m is set to 0.5 for the
Houston data set). From Fig. 8, the multiscale feature cutout
obtains the best result when the value of s is set to two for
all the data sets. Thus, the value of s is set to two in the
experiments to achieve the best performance. It shows that
the proposed DGCN-M can address the overfitting problem
while preserving the power of the model, leading to better
classification results.

D. Experimental Results and Analysis
1) Comparison of DGCN With the State of the Arts:

The proposed DGCN is compared with a traditional super-
vised method: EMP combined with SVM and five deep
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Fig. 6. Impact of dropping rates p in DGCN-D on the four data sets.

Fig. 7. Impacts of cutout region r and mask probability m on the performance of DGCN-M using four data sets.

learning-based methods: the regular CNN, EMP-CNN, SCNN,
HySN, and GCN.

Here, the shape of the structuring element is set as a disk
with an increasing size from two to eight for the EMP-SVM.
The best parameters C and gamma are obtained using fivefold
cross validation. To give fair comparisons, the architectures
and parameters are set similar to the parameters for the
regular CNN [22]. Besides, EMP with CNN and SCNN are
also adopted for spectral–spatial classification. Specifically,
the architecture design of EMP-CNN is similar to CNN.
SCNN follows the same settings described in [61]. In addi-
tion, the latest methods, including HySN and GCN for HSI
classification both published in 2020, are also considered for
comprehensive comparison [48], [59]. The above methods
have been proven to be effective when dealing with a limited
number of training samples for HSI classification.

The results of all experiments are reported in Tables III–VI.
All the experiments are the average values of ten runs with
respect to different random initializations. It can be observed
that the proposed DGCN is superior to other existing methods
by having five training samples per each class for all three data
sets. Especially, compared to EMP-SVM, DGCN improves the
classification accuracy by 5.7% on the Indian Pines data set.
Besides, CNN works worse than EMP-SVM due to a lack of
training samples. In addition, for the Indian Pines data set,
compared to EMP-CNN, DGCN achieves about 6% improve-
ments in terms of OA and K , which means that DGCN is an
effective technique in capturing the relationships among sam-
ples. For SCNN, when the number of training samples of each
class is 5, it cannot improve the classification performance.
Compared to SCNN, DGCN increases the OA by 4.21%,
19.27%, 6.59%, and 8.13% on the Salinas, Pavia, Indian Pines,
and Houston data sets, respectively. Besides, DGCN offers

Fig. 8. Analysis of the influence of the number of scales s of DGCN-M.

significant improvement for the Indian Pines and Salinas data
sets with only five training samples per each class compared
with HySN. In addition, DGCN outperforms GCN on the
four data sets with limited training samples. For example,
on average, DGCN is significantly higher. For the Salinas data
set, slightly better performance is also achieved for DGCN.
Moreover, DGCN also achieves better results with more train-
ing samples, as shown in Fig. 9. All the results demonstrate
that DGCN is an effective strategy in graph learning for HSI
classification.

2) Visualization of Features Obtained by Different Meth-
ods: To clearly illustrate the effectiveness of DGCN,
Figs. 10–13 show the t-SNE visualizations of different com-
parative methods for the four data sets [62], which can clearly
demonstrate the distributions of output features obtained by
different methods. Here, different colors mean different kinds
of labels. More specifically, it can be seen that all class
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TABLE III

CLASSIFICATION RESULTS (VALUES ± STANDARD DEVIATION) ON THE SALINAS DATA SET USING FIVE TRAINING SAMPLES PER EACH CLASS

Fig. 9. Accuracy (%) comparisons under different methods on four HSI data sets using six and seven training samples per each class.

distributions of the original HSI are heavily mixed together on
the Indian Pines, Pavia, and Houston data sets, while DGCN
and DGCN-DC show a good clustering performance, which
increases the between-class distances. Taking the Salinas data
set as an example, as shown in Fig. 10, intuitively, the original
HSI contains distinguishable clusters, but the within-class
distance is large. For the CNN, EMP-CNN, and SCNN [see
Fig. 10(b)–(d)], the intraclass distances become shorter, but
class 15 (blue) and class 8 (light orange) are heavily mixed.
Compared to other methods, for the proposed DGCN [see
Fig. 10(e)], most samples in each class are clustered with
smaller intraclass distances. Besides, class 15 (blue) and
class 8 (light orange) are distinguished, which leads to better
performance. For the proposed DGCN-DC [see Fig. 10(f)],
compared to DGCN, intraclass distances are smaller. In addi-
tion, for the Pavia data set, as shown in Fig. 12(b), CNN works

better than the original HSI, but the test samples in differ-
ent classes are mixed. Moreover, for EMP-CNN, as shown
in Fig. 12(c), each class is clustered together, which means
that EMP-CNN could increase the between-class distances.
For the case of SCNN, the intraclass distance is too large to
classify different samples, which causes worse performance.
In addition, the results of the proposed DGCN are shown
in Fig. 12(e) and (f), respectively. The distributions of output
features show good clustering. Compared to other methods,
DGCN and DCGN-DC not only increase between-class dis-
tances but also minimize intraclass distances among samples.
Indian Pines has similar visual results. For the Houston data
set (see Fig. 13), all class distributions of the competitive
methods are completely mixed, while different kinds of labels
gather together and come into several groups for the proposed
DCGN and DGCN-DC. Intuitively, the visual results illustrate
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TABLE IV

CLASSIFICATION RESULTS (VALUES ± STANDARD DEVIATION) ON THE INDIAN PINES DATA SET USING FIVE TRAINING SAMPLES
PER EACH CLASS

TABLE V

CLASSIFICATION RESULTS (VALUES ± STANDARD DEVIATION) ON THE PAVIA DATA SET USING FIVE TRAINING SAMPLES

PER EACH CLASS

that the proposed dual graph learning, including DGCN and
DCGN-DC, plays an important role in capturing relationships
in and among samples for HSI classification by increasing
between-class distances and minimizing intraclass distances.

3) Overall Results of DGCN-D: The results of the pro-
posed DGCN-D are reported in the last second column
in Tables III–VI. It can be seen that DGCN-D achieves higher
accuracy on the four data sets compared with the proposed

DGCN. More specifically, DGCN-D increases accuracies by
0.49%, 0.33%, and 0.31% in terms of OA, AA, and K on
the Salinas data set. Besides, DGCN-D outperforms DGCN
by 2.08% in terms of OA, 4.08% in terms of AA, and 3.91%
in terms of K on the Indian Pines data set; by 1.61% in terms
of OA, 2.75% in terms of AA, and 1.51% in terms of K
on the Pavia data set; and by 2.12% in terms of OA, 2.36%
in terms of AA and 2.23% in terms of K on the Houston
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TABLE VI

CLASSIFICATION RESULTS (VALUES ± STANDARD DEVIATION) ON THE 2018 HOUSTON DATA SET USING FIVE TRAINING SAMPLES PER EACH CLASS

Fig. 10. T-SNE visualization on the Salinas data set.

Fig. 11. T-SNE visualization on the Indian Pines data set.

data set. From the above results, DGCN-D further delivers
promising enhancement on different data sets. It demonstrates
that DGCN-D is an effective method to prevent the overfitting
problem in graph learning for HSI classification.

4) Overall Results of DGCN-DC: The results of the integra-
tion of DGCN-C and DGCN-D are presented for comparison
on the four data sets, which are shown in Tables III–VI.
Compared to other methods (i.e., EMP-SVM, CNN, DGCN,
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Fig. 12. T-SNE visualization on the Pavia data set.

Fig. 13. T-SNE visualization on the Houston data set.

Fig. 14. Classification results of DGCN with dropout, dropblock, feature
cutout, or multiscale feature cutout.

DGCN-D, and DGCN-C), it can be seen that DGCN-DC,
which combines DGCN-D with DGCN-C, achieves the high-
est classification accuracy on the four data sets. Especially,
for the Pavia data set, DGCN-DC increases the OA com-
pared with the DGCN, DGCN-D, and DGCN-C by 4.27%,
2.66%, and 1.59%, respectively. The results demonstrate that
DGCN-DC, which integrates two different strategies for HSI
classification improvement, is also an effective method to
prevent the overfitting problem in graph learning for HSI
classification.

5) Classification Results of DGCN-M: We compare DGCN,
DGCN with feature cutout, and DGCN with multiscale fea-
ture cutout to validate the effectiveness of the proposed
technique for HSI classification. The test accuracies are
shown in Tables III–VI. From the results, it can be easily
observed that DGCN-C always has a superior performance
compared to DGCN. For example, the OA of DGCN-C
reaches 87.17%, 77.06%, 78.28%, and 61.58% with only
five training samples per each class on the four data sets.
Especially, for the Pavia data set, DGCN-C has an improve-
ment of nearly 2% compared to DGCN. Furthermore, the

Fig. 15. Effects of each part of different methods (i.e., CNN, DGCN,
DGCN-D, DGCN-C, DGCN-M, and DGCN-DC) on improving classification
accuracy.

OAs of DGCN-M are higher than DGCN-C on the four
data sets.

6) Comparing DGCN With Dropout, Feature Cutout,
or DropBlock: In order to evaluate the effectiveness of the
proposed feature cutout, dropout and DropBlock are utilized
for comparison. Here, we randomly selected five samples
per each class, the feature cutout is added after the first
convolutional layer, and dropout is added after the first FC
layer. Besides, to verify the effectiveness of the proposed
DGCN with DropBlock and feature cutout, the settings of
both methods are the same for a fair comparison. The obtained
results by the three methods are shown in Fig. 14. It can be
observed that DGCN with feature cutout exhibits better OA
than DGCN with dropout on all four data sets. Especially, for
the more complex Pavia scene, the classification accuracy of
DGCN with feature cutout is higher than DGCN with dropout
by 3.98%, which illustrates that the proposed feature cutout
is more effective than dropout in alleviating the overfitting
problem. In addition, compared to DGCN with DropBlock,
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Fig. 16. Salinas: classification maps of (a) EMP-SVM, (b) CNN, (c) EMP-CNN, (d) SCNN, (e) DGCN, (f) DGCN-D, (g) DGCN-C, (h) DGCN-M, and (i)
DGCN-DC.

Fig. 17. Indian Pines: classification maps of (a) EMP-SVM, (b) CNN, (c) EMP-CNN, (d) SCNN, (e) DGCN, (f) DGCN-D, (g) DGCN-C, (h) DGCN-M,
and (i) DGCN-DC.

Fig. 18. Pavia: classification maps of (a) EMP-SVM, (b) CNN, (c) EMP-CNN, (d) SCNN, (e) DGCN, (f) DGCN-D, (g) DGCN-C, (h) DGCN-M, and
(i) DGCN-DC.

DGCN with feature cutout achieves the highest classification
accuracy on the four data sets and obtains higher robustness
on the obtained results, which achieves 1.89%, 0.36%, 2.36%,
and 2.82% on the Salinas, Indian Pines, Pavia, and Houston
data sets, respectively. The classification results fully prove
the feature cutout is a simple and powerful regularization
method by dropping out the continuous sections of feature
maps, and feature cutout improves the performance of DGCN
by influencing the subsequent feature extraction steps.

7) Analysis of the Effect of Each Part of the Proposed
Methods on Improving Classification Accuracy: The proposed
methods include DGCN, DGCN-D, DGCN-C, DGCN-M,
and DGCN-DC. Each method consists of several parts. The
effect of each part of the aforementioned methods in terms of
classification accuracy is analyzed, which is shown in Fig. 15.
Especially, DGCN contains three main parts (i.e., data pre-
processing, CNN feature extraction, and dual graph learning).
Since the output features of CNN are used to initialize the
nodes in the graph, the nodes in DGCN cannot be constructed

without CNN. Thus, in this method, we only analyze the effect
of the single CNN part in the DGCN. A comparison of the
single CNN part in the DGCN and DGCN is shown in Fig. 15.
As we can observe, compared to the single CNN part, the pro-
posed DGCN improves the classification results of the four
data sets by 5.64%, 14.60%, 3.53%, and 9.35% in terms of
OA. Besides, DGCN-D consists of two main parts (i.e., DGCN
and drop edge), where the architecture of DGCN is the same
as above. Compared to DGCN, DGCN-D delivers promising
improvement for different data sets. In addition, DGCN-C
includes two main parts, including DGCN and feature cutout.
Similarly, there are two main parts in DGCN-M, including
DGCN and multiscale feature cutout. In the experiments,
the architectures of DGCN in the DGCN-C and DGCN-M are
the same. The results illustrate the effectiveness of the two
proposed techniques for HSI classification. For DGCN-DC,
there are three main parts in the DGCN-DC, which includes
the DGCN, drop edge, and feature cutout. To analyze the
effect of these three parts, the results of DGCN, DGCN-D,
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Fig. 19. Houston: classification maps of (a) EMP-SVM, (b) CNN, (c) EMP-CNN, (d) SCNN, (e) DGCN, (f) DGCN-D, (g) DGCN-C, (h) DGCN-M, and
(i) DGCN-DC.

DGCN-C, and DGCN-DC are also shown in Fig. 15. The
results demonstrate that DGCN-DC is also an effective method
to prevent the overfitting problem in graph learning for HSI
classification.

E. Discussion of Running Time

The training and test time of different methods are summa-
rized in the last row of Tables III–VI when only five training
samples per each class are utilized. All experiments are
performed on a computer with an Intel Core i5-8500 processor
with 3 GHz, 12 GB of DDR4 RAM, and an NVIDIA GeForce
GTX TITAN X graphical processing unit (GPU).

As can be observed from Tables III–VI, the training and
test time of EMP-SVM is short, and EMP-SVM achieves
competitive results. For the competitive deep-learning-based
methods (i.e., CNN and EMP-CNN), the processing time of
these methods is shorter than DGCN because fewer parameters
are needed to train. However, CNN shows poor performance
with limited training samples. In addition, SCNN takes the
longest time since it needs thousands of iterations to train
the model. Besides, DGCN is time-consuming on all data
sets compared to other methods except SCNN. Because
there are two parts in the proposed DGCN: CNN and dual
graph network. CNN is used to extract the features from
the individual sample, and the dual graph network is used
to extract the features among training samples. The proposed
DGCN has more parameters than CNN, but it achieves better
results than CNN. In addition, DGCN-D is able to facili-
tate the training of DGCN, which also reaches higher accu-
racy. Specifically, compared to DGCN, the training time of
DGCN-D decreases by 48.03, 66.89, and 65.75 s on the Sali-
nas, Indian Pines, and Pavia data sets, respectively. Besides,
while DGCN-M has a higher processing time than DGCN,
it has a good performance in terms of accuracies, which
proves that DGCN-M is an effective regularization method to
classify HSI.

F. Classification Map

Figs. 16–19 visualize the classification maps of differ-
ent methods, which includes EMP-SVM, CNN, EMP-CNN,
SCNN, DGCN, DGCN-D, DGCN-C, DGCN-M, and DGCN-
DC. As shown in Figs. 16–19, it can be observed that
EMP-SVM has more correctly classified pixels than those
deep-learning-based methods. In addition, classification maps
of CNN and SCNN produce more errors for the four data
sets with the small training sample size. For the Salinas data
set, many pixels are misclassified on the boundary between
different classes [see Fig. 16(b) and (d)]. For the visual
result of EMP-CNN [see Fig. 16(c)], there are more correctly
classified pixels compared to other comparative deep-learning
approaches, while the proposed methods (i.e., DGCN, DGCN-
C, DGCN-D, DGCN-M, and DGCN-DC) preserve edge infor-
mation well compared to other approaches, especially for the
class of the grapes untrained with mulberry color. Besides,
taking the Pavia data set as an example (see Fig. 18), for the
proposed DGCN-DC, many pixels on the bottom are correctly
classified; however, the competitive methods provide wrong
classification results. The Indian Pines and Houston data sets
follow similar results as the Pavia data set. All the visual
results illustrate that the proposed methods based on graph
learning for HSI classification have better performance than
other competitive approaches.

IV. CONCLUSION

In this study, GCN was explored for HSI classification with
limited training samples. Several GCN-based methods, includ-
ing DGCN, DGCN-D, DGCN-C, DGCN-DC, and DGCN-M,
were proposed.

For DGCN, we used two GCNs to fully extract features
in and among HSI training samples, which led to better clas-
sification performance compared with traditional CNN-based
methods.
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In order to mitigate the overfitting problem caused by
limited training samples, DGCN-D, DGCN-C, DGCN-DC,
and DGCN-M used drop edge, feature cutout, drop edge and
feature cutout, and multiscale feature cutout to enhance the
test accuracy of HSI, respectively.

The superiority of the proposed methods has been illustrated
on four hyperspectral data sets by achieving better results
in terms of classification accuracies. The proposed DGCN
demonstrated that the proper usage of extracting features
among training samples has great potential for accurate clas-
sification of HSI.
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