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On the Growth Regimes of Hydrogen Bubbles at
Microelectrodes†

Aleksandr Bashkatov∗abc, Syed Sahil Hossaina, Gerd Mutschkea, Xuegeng Yanga, Hannes
Roxa, Inez M. Weidinger d and Kerstin Eckert∗abc

The growth of single hydrogen bubbles at micro-electrodes is studied in an acidic electrolyte over a
wide range of concentrations and cathodic potentials. New bubble growth regimes have been identi-
fied which differ in terms of whether the bubble evolution proceeds in the presence of a monotonic or
oscillatory variation in the electric current and a carpet of microbubbles underneath the bubble. Key
features such as the growth law of the bubble radius, the dynamics of the microbubble carpet, the
onset time of the oscillations and the oscillation frequencies have been characterized as a function
of the concentration and electric potential. Furthermore, the system’s response to jumps in the
cathodic potential has been studied. Based on the analysis of the forces involved and their scaling
with the concentration, potential and electric current, a sound hypothesis is formulated regarding
the mechanisms underlying the micro-bubble carpet and oscillations.

Broader context
For a successful transition towards a net-zero-emissions industry,
it is crucial to replace fossil fuels such as natural gas by renewable
energy sources. One promising technology is water electrolysis
using solar- or wind-derived electricity to produce high-purity hy-
drogen gas. However, the costs of water electrolysis today are still
higher compared to conventional methods such as steam methane
reforming. A crucial constraint when using this technique is the
mass transport of the gaseous reaction products hydrogen and
oxygen within the electrolyzer. One approach to both reduce the
costs and improve the overall efficiency is to enhance the bubble
detachment from the electrode. The evolving gas bubbles occupy
the electrode surface and thus reduce the rate of the electrochem-
ical reaction. This makes it highly desirable to develop electrodes
with improved bubble detachment.

If the bubble dynamics is better understood, the design and
the operational parameters of water electrolyzers can be further
optimized to elevate the bubble departure and transport in the
device. This work provides a detailed overview of the different
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bubble growth regimes over a broad range of operational param-
eters. The relevant forces governing the bubble dynamics are
summarized, and their scaling with respect to the experimental
parameters is analyzed. In addition, the causes of the described
phenomena are discussed and partially complemented with sim-
ulation results to gain a better understanding of the forces in-
volved.

1 Introduction
Water electrolysis is likely to become a central technology in the
carbon-neutral energy system of the future, as it allows electrical
energy from renewable sources to be transformed into chemical
energy1. The hydrogen produced can be used directly as a fuel
or serve as a feedstock for further conventional chemicals such
as ammonia and hydrocarbons2–5. However, the large-scale pro-
duction of hydrogen requires the process to become more effi-
cient. In conventional alkaline and Proton Exchange Membrane
(PEM) electrolyzers, considerable losses are caused by the gener-
ated hydrogen and oxygen bubbles, which increase the activation
overpotential at the electrodes by blocking electrocatalytic sites
and also raise the Ohmic cell resistance6–9.

As the dynamics of the electrogenerated bubbles are known to
have quite a complex local influence on various variables involved
in the electrolysis process, e.g. the concentration overpotential10,
supersaturation7,11 and number of nucleation sites12, a better
understanding of all aspects of the hydrogen bubble evolution is
desirable. The knowledge gained will help develop new strategies
for rapidly and efficiently removing bubbles from catalytic sites.
This, of course, could equally be beneficial for other catalytic re-
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actions, including gas formation13.

In the following, we focus on an investigation of the gas evo-
lution at micro-electrodes. Apart from making the experimental
observation of the bubble evolution easier, as a small nucleation
area can be examined14, micro-electrodes can also be consid-
ered a generic model for studying the local bubble evolution at
catalytic sites of porous or mesh-like electrodes15–17. Numerous
studies have been performed in the past to better understand how
bubble evolution proceeds via nucleation, growth, and detach-
ment6,14,17–24. Aspects of the nucleation of H2 nanobubbles, such
as the activation energy, the critical nuclei size or the nanobubble
stability, have been addressed by White et al.25–27 In the subse-
quent growth phase, the radius R of the bubble versus time t can
be described by a power law

R(t) = β tx

with β and x denoting the growth coefficient and the power ex-
ponent19. The short initial stage of the growth phase, lasting
only for O(ms), is governed by liquid inertia and characterized
by x = 119,28,29. Depending on whether the diffusion of hydro-
gen dissolved in the bulk electrolyte19,28–31 or direct injection of
the gas at the bubble foot, via coalescence with smaller hydro-
gen bubbles14,20,21,32,33 is the dominating growth mechanism,
the classical exponents x = 1/2 31 or x = 1/3 33 are observed.
The detachment, governed by the balance of forces34,35 (see Sec-
tion 3), results from either bubble unpinning processes, such as
the neck of the electrode-attached bubble breaking6, or from a
loss of contact with the carpet of microbubbles underneath36. In
the case of acidic electrolytes, both the lifetime and the detach-
ment diameter of the H2 bubbles increase along with the cathodic
potential or current density19,21,36–43. Meanwhile, the situation
with alkaline electrolytes is more heterogeneous, with opposite
trends sometimes being observed by different groups44–48. In
fact, the coalescence behavior of bubbles is strongly influenced
by the pH value and ion-specific effects of the electrolyte stud-
ied49. Hydrogen bubbles are known to coalesce more easily in
acidic H2SO4 than in alkaline KOH solutions50,51.

Hydrogen bubbles evolve subject to competition between buoy-
ancy, which stimulates the bubbles to rise from the electrode, and
the forces attracting them to the electrode, e.g. see Hossain et
al.35 and Section 3. Despite early speculation on the origin of
the bubble return phenomena28, the Marangoni 35,40,52–54 and
electric forces 35,36 have only recently been studied intensively
and were both found to retard the bubble departure at micro-
electrodes. An initial theoretical consideration of the thermocap-
illary effect on electrogenerated bubbles in general was provided
by Guelcher et al.55, later supplemented by reasoning on possible
solutocapillary effects by Lubetkin et al.56. Initial measurements
of the circulating Marangoni flow pattern around electrogener-
ated hydrogen bubbles were carried out by Yang et al.40. Later,
Massing et al.52 were able to show that this flow is mainly driven
by the thermocapillary effect at the micro-electrode. Hossain et
al.53 extended the simulation study on the thermocapillary effect
to include electrodes of different sizes. Later, numerical work by
Meulenbroek et al.54 provided arguments explaining the remain-

ing quantitative differences in the flow profiles observed in the
experiment and computation52 by including surfactant effects at
the bubble interface. Apart from capillary effects causing forces
on the bubble, there is evidence that the electrostatic bubble-
electrode interaction proposed in Coehn et al.57 and Brandon
et al.19 may also exert a force on the electrogenerated bubbles.
In strongly acidic electrolytes, in which the pH is below the iso-
electric point, the hydrogen bubbles acquire a positive surface
charge due to proton adsorption58–60. Thus, they experience an
attracting electric force towards the cathode. Only recently, hy-
drogen bubble dynamics have been shown to transition from con-
ventional stationary to oscillatory growth prior to departure35,36.
By carefully analyzing the bubble dynamics, a quantitative value
for the surface charge density of the hydrogen bubbles was de-
rived. Based on this, it was possible to explain the position os-
cillations of the bubble based on the non-linear variation in the
electric force with the bubble position.

Furthermore, a higher optical resolution allowed a better ob-
servation of the thin carpet of microbubbles covering the micro-
electrode, above which the "main" hydrogen bubble evolves in
an acidic electrolyte14,36. The bubble growth is driven by con-
tinuous and rapid O(µs) coalescence between the main bubble
and the microbubbles of the carpet, following only approximately
the growth law with the exponent x = 1/314. The question of
whether these coalescence events make a significant contribution
to the balance of forces affecting the electrogenerated bubble has
not yet been resolved. Zhou et al.61 claimed that the interaction
between a boiling bubble and smaller bubbles located beneath it
retards detachment. Similarly, reversals in the motion of electro-
generated bubbles recently found under microgravity were shown
to be caused by coalescence with bubbles of moderate size, espe-
cially at higher cathodic potentials42.

The present work extends previous studies14,35,36 by providing
a systematic view of the complex phenomena of the electrolytic
bubble evolution at a micro-electrode. By characterizing impor-
tant variables such as the carpet thickness, the onset of bubble os-
cillations or the bubble elongation over a wide range of cathodic
potentials and electrolyte concentrations, distinct growth regimes
can be deciphered. A regime map is provided which unifies the
three bubble growth regimes observed.

2 Experimental Method
Hydrogen bubbles were produced by water electrolysis in H2SO4

of 0.1...1 mol L−1 under potentiostatic conditions of -2...-10 V.
The electrolyte was prepared using sulfuric acid with a concen-
tration of 1 mol L−1 (Carl Roth GmbH + Co. KG). This was di-
luted to lower concentrations by adding ultrapure water (PURE-
LAB Chorus, 18.2 MΩ.cm). The electrochemical cell sketched in
Figure 1a is a cuboid glass cuvette with dimensions of 10 × 10 ×
40 mm3. A �100 µm Pt micro-electrode is embedded in the glass
base. The three-electrode system is completed by two �0.5 mm
Pt wires inserted vertically from the top to serve as the anode and
the pseudo reference electrode. The cathode potentials are mea-
sured with respect to the pseudo reference electrode (Pt wire, ≈
0.48 V vs. reversible hydrogen electrode RHE for 0.5 M), with the
exception of the results provided in Fig. 10, where the potential is
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Fig. 1 (a) Electrochemical cell consisting of three electrodes, embed-
ded in protective housing. Reprinted from Bashkatov et al.42. (b)
schematic of the slightly deformed hydrogen bubble sitting on the carpet
of microbubbles sandwiched between the bubble and the micro-electrode.
Reprinted from Bashkatov et al.36.

applied versus a mercury-mercurous sulfate electrode (MSE, 0.65
V vs. SHE). The electrochemical cell is connected to an electro-
chemical workstation (Zahner Zennium). For each experimental
run, the electric current was recorded with a sampling rate of 1
kHz over the 30 s, unless noted differently. The surface of the
cathode was polished and thoroughly rinsed with pure water be-
fore the measurement campaign. To minimize the scatter, most of
the measurements were made with the same cathode on the same
day (except the results presented in Section 4.5 and ESI-3†).

The cell features two observation windows for simultaneous
imaging of the bubble evolution over time. For that purpose, a
shadowgraphy system was used. It combines Köhler illumination
with a microscope (Thalheim SpezialOptik Pulsnitz, Germany,
spatial resolution of 1000 pix/mm), connected to a high-speed
IDT camera (Os7 - S3). The recording was carried out at 1000
frames/s, if not mentioned otherwise.

The combination of a micro-electrode and sulfuric acid makes
it possible to produce single hydrogen bubbles that periodically
detach and are a very similar size14,40. Figure 1b presents a
schematic of the slightly deformed spherical H2 bubble, sitting
on the working electrode (Pt), and the carpet of microbubbles
beneath, together with the lines of the electric current density
−→
j directed from the anode to the cathode. All relevant geomet-

ric parameters studied in this work are indicated: H — bubble
height, W — bubble width, ε — bubble elongation reflecting its
deformation and δ — thickness of the carpet. The geometric pa-
rameters H, W and δ were extracted by image processing car-
ried out on the shadowgraphs based on the Canny edge detection
method described in Matlab R2019b (see the Supplemental Ma-
terial in Bashkatov et al.36). The elongation of the bubble foot is
calculated as ε = H −W −δ .

At low cathodic potentials and spherical bubbles, the bubble
radius is R = W/2. For non-spherical bubbles, the radius R of
the bubble is presented as the equivalent radius of a sphere, the
volume of which was obtained from the the current measured

using Faraday’s law14, unless noted otherwise.

The hydrogen bubble evolution was studied for 30 s for each
value of concentration and potential. To eliminate the possible
influence of small fluctuations in the bubble evolution, the results
are averaged over the number of H2 bubbles formed in 30 s, typ-
ically approx. 8 bubbles. As fewer [more] than 8 bubble cycles
occur at a high [low] cathodic potential, the respective type of
averaging will be clearly stated.

3 Theoretical: Forces on H2 bubbles

The correct interpretation of the dynamics of the hydrogen bubble
at the micro-electrode (Fig. 1) requires an understanding of the
governing forces. Essentially, four forces matter: buoyancy, the
hydrodynamic force35,54, the electric force36 and the interaction
force between the gas carpet and the bubble. Buoyancy, which is
the only force acting upwards and is thus responsible for bubble
detachment, is given as

−→
Fb =

4
3

πR3
∆ρ

−→g , (1)

where ∆ρ is the density difference between the gas and the liq-
uid, and g is the gravitational acceleration. The electric force,

−→
Fe ,

originates in the action of the electric field that exists in the elec-
trolyte with respect to the electric charge adsorbed at the bubble
interface. It is quantified by

−→
Fe =

∫
S

σs
−→
E dA. (2)

σs is the surface charge density of the bubble interface and
−→
E is

the electric field vector. S denotes the bubble interface. As a first
approximation, we assume that the proton adsorption at the gas-
liquid interface, which is the surface-charge-dominating species
below the iso-electric point (pH 2...3)19, is governed by Henry’s
law. Hence, the surface charge density σs is proportional to the
concentration c.

Fig. 2 Variation in hydrodynamic force (Fh) and electric force (Fe) with
carpet thickness (δ). The parameters used in the simulations are: R =

304 µm, φc =−3 V, Θ = 80, κel = 12 S/m, σs = 1.32 mC/m 2.

The hydrodynamic force,
−→
F h, originates in the electrolyte flow

in the vicinity of the hydrogen bubble, and is given as

−→
F h =

∫
S

−→
τh dA. (3)
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Here, −→τh = −ph
−→n + µ

∂
−→u

∂n + µ∇un is the hydrodynamic boundary
stress. ph is the hydrodynamic pressure, µ is the dynamic viscosity
of the electrolyte, −→u is the electrolyte velocity vector, −→n is the
surface-normal unit vector, and un =

−→u ·−→n .

It has been shown that the electrolyte flow at the bubble in-
terface is primarily driven by thermocapillarity40,52–54 that orig-
inates in a significant temperature gradient along the bubble in-
terface. The temperature gradient was found to be largely caused
by the highly concentrated Joule heating, given by |−→j |2/κel , at
the foot of the bubble.

−→
j is the local current density vector

in the electrolyte and κel is the electric conductivity of the elec-
trolyte. The generated heat is then advected along the interface
by the Marangoni flow. Diffusion of heat is of minor importance
only. A characteristic Peclet number describing the ratio between
convective and diffusive heat transfer can be estimated as fol-
lows. When assuming an interface velocity U of 10 mm/s52 at
a bubble of radius R = 300 µm, Pe = U ·R/α = 180 where α de-
notes the thermal diffusivity of the electrolyte. Typical Marangoni
numbers for a temperature difference of about 10 K amount to
Ma = βV ·∆T ·R/(µ ·α) = 104 and underline the importance of
the thermocapillary effect. Here, βV denotes the volumetric ther-
mal expansion coefficient, and µ denotes the dynamic viscosity
of the electrolyte52. As

−→
j = κel

−→
E , both Fh and Fe are strongly

influenced by the current density/electric field that exists in the
electrolyte.

To investigate the dependence of Fe and Fh on the carpet thick-
ness δ , parametric simulations of Fe (δ ) and Fh (δ ) are carried out
in COMSOL 5.5. The parameters and methodology of the simula-
tion are given in the caption and the ESI-1†, respectively. Fig. 2
shows that Fe and Fh exhibit similar behavior. Both forces act
downward and increase in strength as δ increases. At certain val-
ues of δ , Fe and Fh reach their respective maximum values and
decrease with a further increment in δ . This change in the elec-
tric force can be understood as being caused by a change in the
electric field due to variations in the carpet thickness36, cf. Equa-
tion 2. The hydrodynamic force variation arises from a change in
current density with varying carpet thickness, which both modi-
fies Joule heating and the location of the temperature maximum
at the bubble surface, which in turn changes the flow structure
and thus the force, cf. Equation 3.

Finally, the interaction force between the carpet and bubble,
−→
F g−g, includes the effect of bubble coalescence. These events,
even for bubbles of different sizes, are responsible for a shift in
the center of mass toward the electrode. Such reversals of the
bubble movement following coalescence were shown recently in a
microgravity environment42. However, a quantitative expression
for

−→
F g−g does not yet exist, to the best knowledge of the authors.

In the absence of the micro-bubble carpet, the contact pressure
force34 and the surface tension force also need to be considered.
The surface tension force, given by

Fs =−2πrcγ sinθ , (4)

acts at the three-phase contact line due to surface tension. γ is
the surface tension, θ is the contact angle and rc is the contact

radius. The contact pressure force, given by

Fcp =
2γ

R
πr2

c (5)

can be thought of as the excess Laplace pressure acting on the
contact area and is directed upward.

As Fs and Fcp do not exist in the dominant case of bubbles grow-
ing on a micro-bubble carpet (Fig. 1b), the balance of forces in the
vertical direction is given by

Fb +Fh +Fe = 0, (6)

neglecting the unknown Fg−g. If buoyancy Fb wins the competi-
tion with Fe and Fh, the bubble detaches.

4 Results
Figure 3 provides an overview of the phenomena observed during
a systematic increase in the cathodic potential. The starting point
is the temporal behavior of the current during the evolution cycle
of single bubbles, shown in Fig. 3a. The time axes are normalized
with the respective bubble lifetime, T , at the cathode. Each cycle
starts with the nucleation of the bubble and terminates with its
detachment. The bubble growth in between leads to an increasing
blockage of the active electrode area, which forces the electric
current to enter a plateau.

This behavior of the electric current is that of the classical bub-
ble growth studied in previous works14,21,33,35,36,38,40–42,52,62–65

and found at low cathodic potentials. This behavior is referred
to as Regime I, see Fig. 3b. It is characterized by the growth of
nearly spherical bubbles on top of a carpet of micro-bubbles (see
red circle), and monotonic variations in both the position of the
apex of the bubble (at height H) and the electric current. The
transient of the bubble radius R(t) in sub-figure b(1) is plotted
in two versions, which closely match: via image analysis (dashed
line) and via the bubble volume using Faraday’s law (solid line).
The features of Regime I are described in Section 4.1.

For a cathodic potential ≥ -3.8 V, the monotonic variation in
the current is abruptly replaced by the electric current oscillat-
ing rapidly, as displayed for -4 V in Fig. 3a. This type of electric
current transient is referred to as Regime II, see Fig. 3c. As elab-
orated earlier, this oscillating electric current is related to vertical
oscillations of the bubble position, expressed as oscillations in the
bubble apex, H, see sub-figure c(2). The growth of the bubble
again proceeds on top of a carpet of micro-bubbles, see enlarged
image in c(3). The thickness of the carpet of microbubbles cover-
ing the micro-electrode varies periodically36. Regime II is further
detailed in Sections 4.1 and 4.2.

When the cathodic potential is increased further, these oscil-
lations disappear again, as first observed at -7 V in Fig. 3a. A
third Regime III starts, which is characterized by bubble growth
without a carpet underneath. In Regime III, the largest bubbles
are produced; these experience noticeable shape deformations
prior to their departure. The remaining oscillations in the current
response prior to departure are caused by instabilities in the
shape of the bubble neck at the micro-electrode, as will be
discussed in Section 4.3.
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Fig. 3 a) Change in the electric current versus time t, normalized with the bubble lifetime T , upon increasing the cathodic potential (c = 1 mol L−1).
b)-d) Representative transients of the electric current and bubble images for the three different bubble regimes marked at the bottom of subfigure a)
(see main text). b)-d) represents the bubble evolution in 0.5 mol L−1 at -2 V, in 0.5 mol L−1 at -7 V and in 1 mol L−1 at -10 V, respectively. The
potential is given vs. pseudo RE (Pt wire).
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Fig. 4 (a) R(t) for different potentials and an electrolyte concentration of
0.5 mol L−1. (b) R(t) from (a), reproduced in double logarithmic scale.
(c) R(t) for different electrolyte concentrations at a fixed potential of -4
V. Each line starts from nucleation and ends at the detachment, and is
the result of averaging over 8 bubbles. The insets show the initial phase
of the bubble evolution. The potential is given vs. pseudo RE (Pt wire).

In the initial phase of the bubble cycle, further small-scale
oscillations are found. In this case, these are the strongest at -6
V. They are caused by bubble position oscillations in the lateral
direction, i.e. from the left to the right-hand side (and vice
versa), and are beyond the scope of the present study.

The temporal evolution of the bubble radius, driven by the
transient electric current within the evolution cycles, is shown
in Figure 4a for different cathodic potentials at a fixed electrolyte
concentration of 0.5 mol L−1 and (c) for various electrolyte con-
centrations at a fixed potential of -4 V. The radius data R(t) shown
were averaged over 8 bubble cycles. Each line starts from nucle-
ation and ends at the detachment. The insets represent the initial
first 50 ms of the bubble evolution, and are characterized by a
clear trend: the higher the cathodic potential or the higher the
concentration, the faster the bubble grows. However, this trend
weakens and saturates at high concentration values. Similarly, at
the high cathodic potential of -10 V, the speed of growth even
becomes smaller than at -8 V. Fig. 4b represents the data from
subfigure (a) in a double logarithmic plot to draw conclusions on
the exponent x of R ∝ tx during bubble growth. The black dashed
and dotted lines added represent the theoretical growth modes
of x = 1/3 and x = 1/2. Additionally, a dashed-dotted line for
the case of x = 1/4 is inserted. As can be seen, the slopes of the

growth curves and thus the exponents of the growth law change
over time. Initially, the behavior is close to x = 1/2, but after sev-
eral milliseconds the exponent quickly decreases to x = 1/3 and
even converges to x ≈ 1/4, the faster the potential rises. Then,
the exponent remains nearly constant for a relatively long time.
This is, in particular, true for the high cathodic potentials (i.e. -8
V and -10 V). When the grown bubble is close to departure, the
exponent rises again; it reaches x ≈ 1/3 at lift-off. This variation
in the bubble growth exponent over time is related to the poten-
tiostatic mode applied in the experiments and also to the specifics
of the evolution of large bubbles at the micro-electrode.

As shown in Fig. 3, the electric current, which determines the
bubble growth rate, depends on the bubble size. Moreover, the
carpet thickness and the growth regime exert an influence, as
will be discussed below. A similar situation involving time-varying
growth exponents is found at different electrolyte concentrations,
as shown in Fig. 4c. Here, the power coefficient at 1 mol L−1 is
also close to, or even slightly below 1/4 (not shown).

Fig. 5 (a) Detachment diameter d, bubble lifetime T and (b) mean elec-
tric current I versus the cathodic potential applied at different electrolyte
concentrations. The shaded region marks the oscillatory bubble Regime
II. All data shown are averaged over the respective number of complete
bubble cycles within a period of 30 s. The electrical current is the mean
value, additionally averaged over the bubble cycles. The standard de-
viations of d and T are mostly below 1% and given as error bars. The
latter are not useful for I due to the current oscillations in Regime II. The
potential is given vs. pseudo RE (Pt wire) if not mentioned otherwise.

The evolution of the bubble radius versus time, can be used to
determine the detachment radius of the bubble and its lifetime.
The lifetime of the bubble at the electrode is terminated when the
balance of forces is violated (see Eq. 6). As the buoyancy force
scales ∼R3, the lifetime measures how fast the bubble reaches the
critical diameter of departure. Fig. 5a shows that the detachment
diameter d = 2R and the bubble lifetime T increase with increas-
ing cathodic potential and increasing concentration. The parame-
ter region of Regime II, shaded in orange, shows the plateau-like
behavior of the detachment diameter when the cathodic potential
increases. This plateau is especially well resolved at the higher
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concentrations (1, 0.7 and 0.5 mol L−1).

Fig. 5b shows the mean electric current I averaged over the
bubble cycles. The behavior of I at the micro-electrode, and thus
the mean hydrogen production rate, are mainly affected by the
bubble dynamics, which influence the Ohmic resistance. As can
be seen, the electric current generally tends to increase with the
potential and concentration. However, at concentrations higher
than 0.5 mol L−1 and potentials larger than -4 V, the trend weak-
ens and even reverses, as clearly seen when comparing the cases
of 0.7 mol L−1 (red curve) and 1 mol L−1 (black curve). For
each concentration, a limiting potential exists above which I stops
increasing and starts to drop again. This limiting potential is
smaller at higher concentrations. The phenomenon seems to be
related to the plateau-like behavior discussed in subfigure (a) and
also the discussion on the initial growth dynamics of the bubbles
in Fig. 4. It may be caused by depletion effects suffered by the
electrolyte at high mass transfer rates, geometric effects of larger
bubbles hindering mass transfer, or modifications to the bubble
carpet underneath, which will be discussed below.

4.1 Micro-bubble carpet dynamics and transition from
monotonic (Regime I) to oscillatory (Regime II) currents

The basic features of Regime I are summarized in Figure 3b for
the evolution of the first bubble at -2 V in 0.5 mol L−1. As soon
as the potential is applied (t = 0), a strong current is observed,
see sub-figure b(1). Bubble nucleation immediately starts at the
electrode. Sub-figure b(2), at a frame rate of 8000 s−1, shows nu-
merous micro-bubbles forming the so-called bubble carpet. Rapid
coalescence events takes place within two frames, i.e. in less than
125 µs, with continuously generated small bubbles making up the
carpet. After approx. 500 µs a single, or mother bubble is formed
with a typical size of about R ≈ 30 µm. Fig. 3b(3) shows the
further growth of the bubble which is responsible for the reduc-
tion of the current in b(1). When the bubble detaches from the
electrode, here at t = 645 ms, the carpet remains, and the electric
current reaches a maximum again.

Next, the dynamics of the micro-bubble carpet during the bub-
ble evolution are investigated. Figure 6a shows a magnified im-
age of the foot of the bubble, where the micro-bubble carpet is
located (Regime I: 0.3 mol L−1 and -4 V). The thickness of the
carpet, δ (t), is seen to increase during bubble growth and reach
a maximum at departure, here at t = 1.049 s.

Fig. 6b resolves the temporal dynamics of the carpet thickness,
compared with the bubble radius over the bubble lifetime in Fig.
6c, for different cathodic potentials (0.3 mol L−1). All data are
obtained from image analysis where the spatial resolution of the
optical system is about 1 µm. The inset in (b) defines three char-
acteristic times: the first appearance of the carpet at t1, the start of
the oscillations at tonset , and finally the instant shortly before de-
tachment tcrit . As already anticipated in Fig. 6a, δ increases with
the growth of the bubble radius. However, this increase proceeds
in two different modes: monotonic growth (unfilled symbols) and
oscillatory growth (solid line). For the lower cathodic potentials,
-3 V and -4 V at 0.3 mol L−1, the monotonic growth of the carpet
is the exclusive mode. This holds true for the entire Regime I.

Fig. 6 (a) Magnified images of the evolution of the carpet in Regime I.
For support, the circular bubble shape is marked in red. Concentration
0.3 mol L−1, potential at -4 V. (b) Temporal evolution of the carpet
thickness δ and (c) the bubble radius at different potentials (vs. pseudo
RE (Pt wire).); concentration 0.3 mol L−1. The oscillatory behavior in δ

is in Regime II.

This behavior changes with higher cathodic potentials (-5, -6 and
-8 V), at which a transition from monotonic to oscillatory growth
occurs at tonset . These oscillations are the direct fingerprint of the
transition from Regime I to Regime II. Indeed, the onset of oscil-
lations in the electric current also leads to a corresponding oscil-
lation in the vertical bubble position (Regime II, cf. Section 4.2),
which enables synchronous carpet oscillations. At larger cathodic
potentials, the appearance of a carpet of measurable thickness δ1

is delayed. Furthermore, the carpet thickness, δonset , is smaller at
the onset of the oscillations.

The growth of the carpet lasts until bubble detachment, at
which point the critical carpet thickness δcrit , marked by red cir-
cles in Fig. 6b, is achieved. The values of δcrit were obtained by
averaging over 20 ms (equal to 20 images) before detachment in
the case of a monotonic carpet evolution. In the case of oscillatory
growth, the value of the penultimate peak before detachment was
used. The dotted lines in subfigure (b) show the carpet evolution
after detachment.

Figure 7 summarizes the behavior of the critical carpet thick-
ness δ crit versus potential for different concentrations. The data
shown were obtained from averaging over 5...8 bubbles, and the
error bars are the corresponding standard deviations. For guid-
ance, 3rd -degree polynomial fit curves are added, from which the
main trend can be derived. When the cathodic potential is in-
creased to more negative values, at almost all concentrations the
critical carpet thickness first increases to reach a peak value of
δ

m
crit , then decreases again. In more detail, as the concentration

increases, the peak value of δ
m
crit becomes smaller and is shifted

towards lower cathodic potentials. At the lowest concentration
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Fig. 7 Critical carpet thickness versus potential (vs. pseudo RE) at
different concentrations. The data points result from averaging over
5...8 bubbles. For guidance, 3rd-degree polynomial fit curves are added.

value of 0.1 mol L−1, the peak value may be located outside the
studied potential range. Table 1 summarizes the peak values of
δ

m
crit and the respective electrode potentials φm1 for the different

concentrations c. We note that the φm1 values obtained from Fig. 7
coincide with the onset of a plateau-like behavior of I in Fig. 5

Concentration, mol L−1

1 0.7 0.5 0.3 0.1
δ

m
crit , µm 14.3 16.1 20.3 26.7 —
φm1, V -4.5 -5 -7 -9 —

Table 1 Peak values of δ
m
crit (cf. Fig. 7) and respective potential values

φm1 for various electrolyte concentrations.

The carpet thickness at detachment, δ crit (Fig. 7), can be con-
sidered as the maximum quasi-equilibrium position of the bubble
permitted by the given values of φ and c. It notably scales with
φ and c: for a given c, δ crit increases as the potential φ becomes
larger until a maximum value δ

m
crit is reached at φm1. This in-

crease is probably caused by the higher current I, leading to a
higher bubble nucleation rate. For φ > φm1 the trend reverses,
and the carpet thickness δ crit decreases again. This decrease in
the carpet height is also reflected in Fig. 6b.

4.2 Regime II: Oscillatory bubble growth
Figure 3c(1) shows the evolution of the current in Regime II for
the example of -7 V and 0.5 mol L−1. We see that a transition from
monotonic toward oscillatory growth occurs at tonset/T = 0.41, i.e.
after 41% of the lifetime T of the bubble at the electrode. A mag-
nified image of the final current oscillations prior to departure
is shown in Fig. 3c(2) together with the transient of the bubble
apex, height H as introduced in Fig. 1. The last four instants
when the current reaches a maximum or minimum value dur-
ing the oscillation are marked by red squares and are labeled (i)
to (iv). Fig. 3c(3) shows the bubble images at these instants in
time, with the dashed red line additionally marking the position
of H at the time of the first minimum (i). It is obvious that the

local maxima of H and I are in phase, i.e. the cathodic current
reaches a maximum at the highest bubble position. The inset in
(ii) shows the micro-bubble carpet at the moment the bubble is at
the highest position of the last oscillation phase. The carpet thick-
ness oscillates together with the bubble position as already shown
in Fig. 6b. When the bubble reaches a maximum height H, the
space between the bubble foot and the electrode surface is also at
a maximum, which allows the micro-bubble carpet to expand and
the current to grow, as the electrode is less blocked by the bubble.
When the bubble moves toward the electrode to attain the mini-
mum H, the thickness of the bubble carpet decreases until it is no
longer visible (iii). During the oscillations, the amplitudes of the
current, top position H and carpet thickness δ rise until critical
values are reached at which the bubble detaches.

The frequency of the oscillations is calculated from f = 1/∆t,
with ∆t denoting the time interval between two consecutive max-
ima (or minima). The frequency and amplitude of the electric
current oscillations are detailed in ESI-2† (Figure S1) and sum-
marized in Figure 8 for different concentrations. Figure 8 plots
the non-dimensional onset time tonset/T in (a), the dimensionless
radius R∗ (b) and the frequency of the current oscillations versus
the potential applied (c). Here, R∗ = Ronset/R is the ratio between
the radii at the onset and detachment, respectively. All data show
the mean and the error margin from averaging over 8 bubbles.

Fig. 8 Characterization of the oscillatory behavior in Regime II: (a)
Dimensionless onset time. (b) Dimensionless radius R∗. (c) Frequency
of the electric current. The data show the mean and error margins from
averaging over 8 bubbles. For further details see the text. The potential
is given vs. pseudo RE (Pt wire).

To explain the main trends seen in Fig. 8 we first focus on the
case of c = 1 mol L−1 (black curves). At a potential of -3.8 V, the
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oscillations set in when the bubble has reached roughly 80% of
its final radius at approx. 80% of the bubble lifetime. For higher
cathodic potentials, the dimensionless onset time decreases, in
line with a smaller dimensionless bubble radius at the onset. At
a potential of φm2 =−5 V, all three variables attain local extrema
(black curve, 1 mol L−1). Thus, at -5 V the oscillations start at
the earliest time (at given c = 1 mol L−1), hence with the small-
est possible bubble radius. The small bubble size means the fre-
quency can reach its highest level ( f ∼ 140 Hz) as less electrolyte
mass needs to be accelerated in line with the spring model of os-
cillations36. Afterwards, the trend is reversed, and the onset time
and R∗ increase again with increasing cathodic potential. This
pattern is found for all concentrations > 0.1 mol L−1. Impres-
sively, the duration of the oscillations can take up to 80% of the
bubble lifetime (0.7 mol L−1, -7 V) starting at a radius Ronset of
about 0.556 R, equivalent to a bubble volume of V onset = 0.172V .

4.3 Regime III: Monotonic growth of non-spherical bubbles
without micro-bubble carpet

The features of the bubble evolution in Regime III are presented in
Figure 3d at -10 V and 1 mol L−1. The electric current again varies
monotonically as in Regime I, see d(1). A single bubble with a
radius R = 89 µm is formed by coalescence after just 2 ms, see
Fig. 3d(2). The rest of the bubble evolution proceeds smoothly,
without any measurable micro-bubble carpet, hence seemingly
without coalescence, and therefore presumably by diffusion, un-
til the detachment at a size of R = 641 µm. Minor perturbations
in the current are visible shortly before detachment caused by in-
stabilities in the bubble neck, which repeatedly disconnects from
and reconnects with the electrode. Since there is no micro-bubble
carpet, it is possible to measure the contact angle between the ad-
hered bubble and the electrode surface. As shown in Fig. 9a, the
contact angle drops rapidly after nucleation to reach a broad min-
imum during growth, before again rising to about 28 degrees at
departure.

Bubble growth in Regime III is characterized, besides the ab-
sence of the carpet, by a stretching of the bottom part of the bub-
ble. We quantify this in terms of elongation ε (cf. Fig. 1(b)).
The critical elongation of the bubble before detachment, εcrit , is
plotted in Figure 9(b) vs. potential for different electrolyte con-
centrations, averaged over 5...8 bubbles. The error bars are the
corresponding standard deviations. The elongation εcrit increases
with both the cathodic potential and concentrations. The highest
value of εcrit ∼ 80 µm is measured at 1 mol L−1 at -10 V, which is
equal to 13% of the detachment radius. Note that a certain elon-
gation of the bubble is present in all three regimes. However, it is
considerably smaller in Regimes I and II, where a carpet exists.

Finally, we note here that Regime III stays at high concentra-
tions when even higher cathodic potentials are applied than those
studied so far. The behavior that is found comes to be domi-
nated by vertical shape oscillations of the strongly deformed bub-
ble, which are clearly different from the position oscillations of the
bubble in the case of Regime II. In Figure 10, three consecutive
bubble images are shown in 1 mol L−1 at -12 V (vs MSE — a
mercury-mercurous sulfate electrode, 0.65 V vs SHE) to visualize

Fig. 9 (a) Variation in contact angle and elongation over time during one
bubble cycle in Regime III (1 mol L−1 at -10 V). (b) Critical elongation
εcrit before the bubble detaches vs. potential at various concentrations.
Each point represents a value averaged over 5...8 bubbles. The potential
is vs. pseudo RE (Pt wire).

the oscillations in the shape. During these oscillations, the bub-
ble remains attached to the electrode. The high potentials of -12
V in 1 mol L−1 are beyond the operating limit of the electrode
as the high current densities might damage the micro-electrode.
Therefore, it is difficult to obtain results with robust statistics.

Fig. 10 Beyond Regime III (1 mol L−1 at -12 V): Vertical oscillations
in shape at high potential. The snapshots show the bubble in its upper,
lower and again upper position shortly before detachment. Time counts
from nucleation. The lifetime in this particular case is T = 9.4360 s.
Image recording at 5380 frames/s. The potential is vs. MSE.

4.4 Regime map
The three bubble growth regimes described so far occur in differ-
ent regions of the parameter space spanned by φ and c. Their lo-
cation is summarized in the regime map shown in Fig. 11. Here,
the experiments (and their repetitions) performed for a specific
combination of (φ , c) are indicated by regime-specific symbols
(e.g. squares for Regime I). Each symbol or experiment hides the
I(t) and R(t) transients which were shown by way of example in
Figs. 3 and 4. Hence, the regime map in Fig. 11 is actually a
three-dimensional plot, simplified to a 2D plot for greater clarity.
Red circles correspond to experiments on the boundary between
two regimes. Polynomial fits mark these boundaries by dashed
lines.
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Fig. 11 Regime map showing the three different regimes of bubble growth
as a function of cathodic potential (vs. pseudo RE) and electrolyte con-
centration. Red circles indicate experiments at the border between differ-
ent regimes. The regime borders (dashed lines) are fitted by c = a×|φ |b.

In Table 2 we collect insightful data taken from the experiments
marked with red circles at the boundary between Regime I and
Regime II (orange dashed line) exactly at the onset time tonset(c,
φ) of oscillatory growth.

c, mol L−1 φ , V δ , µm W , µm ε, µm I, mA

1 -3.8 2.93 811 16.3 1.51
0.7 -4 3.23 803 15.6 2.12
0.5 -5 5.79 851 17.7 2.48
0.3 -5 6.40 712 9.40 1.49
0.1 -8 11.8 648 6.80 1.06

Table 2 Data depicted at tonset(c, φ) along the border between Regimes I
and II in Fig. 11. Bubble width W , carpet thickness δ , elongation ε and
I were averaged over 8 bubbles.

Table 2 shows that a reduction of the concentration shifts the
transition from Regime I to II at higher cathodic potentials φ (2nd

column) accompanied by an increase in the carpet thickness δ

(3rd column). The size of the bubble (width W) at tonset first
slightly increases to reach a maximum at the intermediate con-
centration c = 0.5 mol L−1, then decreases again. The same trend
is observed for the bubble elongation ε and the current I.

For further illustration of the different bubble regimes, videos
are available in ESI†.

4.5 Bubble response to jumps in potential
To check the robustness of the regimes identified, the system’s re-
sponse to jumps in the potential was analyzed. First, the carpet
response to a sudden rise in the cathodic potential φ1 =−5 V, ap-
plied for 0.7 s, to φ2 = -6, -7, -8 and -10 V is studied in Figure 12.
As the bubble evolution at fixed φ1 proceeds with nearly identi-
cal I(t) and R(t) transients (Fig. 12a), the bubble size in the four
experiments is identical before jumping from φ1 to φ2. At the mo-
ment the potential is swapped, a peak in the current appears, the

magnitude of which is proportional to φ2. Afterward, the current
relaxes quickly. The increase in the radius is consistently slightly
steeper for -10 V compared to -6 V (see inset). The curves stop
at t = 1.2 s due to bubble detachment caused by the potential
interruption (φ3 = 0 V).

Most importantly, simultaneously with the jump in the poten-
tial, the bubble moves closer to the electrode. This can be seen
from the images of the foot of the bubble before and after the
jump φ1 → φ2 =−8 V in Fig. 12b. This movement happens quickly,
within several ms. The thicknesses of the carpet at φ1, δ φ 1 , and at
φ2, δ φ 2 are summarized in Table 3.

Fig. 12 Response to jumps in the potential in Regimes I and II: (a)
Applied jumps from φ1 = −5 V → φ2 → φ3 = 0 V at 0.1 mol L−1 and
resulting I(t) and R(t) transients. (b) Images of the micro-bubble carpet
before and shortly after the jump from -5 V to -8 V (vs. pseudo RE).

φ2,V δ φ1 , µm SD, µm δ φ2 , µm SD, µm ∆
δ φ1−δ φ2

, µm

-6 6.2 0.5 3.6 0.4 2.6
-7 6.4 0.6 2.7 0.4 3.7
-8 6.6 0.4 1.3 0.6 5.3

-10 7.2 0.5 ≈ 0 ≈ 0 7.2

Table 3 Thickness of the carpet before (δ φ1 ) and after (δ φ2 ) the jump
in the potential from φ1 to φ2 for various φ2. Each value was averaged
over 20 ms (20 images) before and after the jump in potential for every
individual bubble and over 5 bubbles. SD is the standard deviation.
∆

δ φ1−δ φ2
represents the reduction in the carpet thickness caused by the

jump in the potential.

The reduction in the carpet thickness from δ φ 1 to δ φ 2 , ex-
pressed by ∆

δ φ1−δ φ2
, increases along with φ2 until no resolvable
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carpet is left: this happens at -10 V at the given bubble radius.
The response to the jumps in the cathodic potential of both de-

veloped oscillations in the current and the transition from Regime
III → II is presented in ESI-3† (Figure S2). These experiments
underline the fact that the oscillations are a very robust phe-
nomenon and that an instantaneous transition from Regime III
to Regime II can be achieved by suddenly lowering the cathodic
potential. For further illustration of the behavior at the jumps of
the potential, videos are available in ESI†.

5 Discussion
By applying high electric potentials φ considerably exceeding that
in industrial electrolyzers, we were able to analyze the evolution
of hydrogen bubbles under extreme conditions and for a wide
range of electrolyte concentrations, c. The new bubble growth
regimes detected shed more light on bubble dynamics in general,
and especially the underlying balance of forces, cf. Section 3 and
Hossain et al.35.

The basic features of bubble growth as a function of c and φ

can be understood to a zeroth approximation using a simplified
version of Ohm’s law without the concentration part: I = φ/Rel .
The ohmic resistance is given by Rel = l/(κelA). It depends on
the electrode area A, on the current path length l, changes in
which are neglected, and on electrical conductivity κel , which is
controlled by the concentration of the electrolyte. In differential
form, the increment of the current, dI, is given by

dI =
κel

l
(Adφ +φ dA). (7)

dI increases with increasing values of κel (hence c), and φ . dI
decreases with growing bubble size as the electrode becomes de-
activated, i.e. dA < 0, if the bubble size exceeds that of the micro-
electrode.

In the initial phase of bubble growth after nucleation, the speed
of growth is strongly determined by the values of φ and c (Fig. 4
and Fig. 6). At an intermediate stage, when the bubble is already
large compared to the size of the micro-electrode, the growth
rate is much less dependent on potential and concentration, and
largely determined by the geometry, implying an elevated ohmic
resistance (cf. Eq. 7). As the bubble carpet grows over time in
Regimes I and II (see Fig. 6b), the ohmic resistance decreases
slightly, and the bubble growth rate again becomes moderately
dependent on the potential and concentration.

The features of all three regimes, including the diameter at
which the bubble detaches, are governed by the forces acting on
the bubbles. To better understand the interplay between buoy-
ancy (Fb), which is responsible for bubble detachment, and the
attracting forces, electric force, Fe, hydrodynamic force, Fh and
the bubble-carpet interaction Fg−g, we next analyze their scaling
with the radius, potential and concentration. When the charge
density is assumed to be constant, Fe scales with the surface size
of the bubble ∼ R2 and the applied potential φ . As the surface
charge density is known to further depend on the pH, the bulk
concentration is also important, so apart from saturation effects
at high concentrations Fe ∼ c ·φ ·R2.

The hydrodynamic force originating from the thermocapillary

effect is slightly more complex. As the bubbles grow close to the
electrode wall, the main force components result from the bal-
ance of the thermocapillary stress (FM) and the pressure (Fp),
with the latter dominating35,54. From Lubetkin et al.66 and Zeng
et al.67 it is known that FM ∼ ∂γ

∂ s R2. The gradient of the sur-
face tension is caused by the Ohmic dissipation ∼ I2 and reduced
by the advection of heat due to the interfacial flow. As known
from earlier work, the interfacial velocity scales as u ∼ I (see Yang
et al.40). We therefore assume that FM ∼ I ·R2 applies approxi-
mately. On the other hand, the thermocapillary flow reduces the
pressure at the bubble foot, and the resulting pressure force is
Fp ∼ ∆p ·R2. Assuming that ∆p ∼ u due to extreme viscous fric-
tion near the wall, and again using u ∼ I from Yang et al.40 we
finally arrive at Fp ∼ I ·R2. This agrees with the scaling derived
for FM , which is not surprising, as Fp originates in FM . For the
following scaling analysis, we assume that the pressure compo-
nent of the hydrodynamic force Fp dominates compared to the
Marangoni part FM .

The poorly understood bubble-carpet interaction, Fg−g, is ex-
pected to increase along with the number of small bubbles in the
carpet; thus it should scale ∝ I. Table 4 again summarizes the
scaling of all forces with φ , c and R as well as their characteristic
values. Additionally, contact pressure and surface tension forces,
which are only relevant in Regime III, are included. We also draw

Forces Formulation Scaling Direction

Fb Eq. 1 ∼ R3 ↑
Fe Eq. 2 ∼ cφR2 ↓
Fh Eq. 3 ∼ IR2 ↓
Fs Eq. 4 ∼ γrc sinθ ↓
Fcp Eq. 5 ∼ γr2

c
R ↑

Table 4 Forces acting on the bubble and their scaling with operating
parameters and bubble radius. An upward arrow implies that the force
acts in +z direction for the coordinate system defined in Figure 1b and
the downward arrow indicates the opposite. The scaling of Fg−g is left
for future studies.

attention to the fact that for a bubble in Regime III growing on a
solid surface (Fig. 9(a) at t = 5 s), the downward-directed sur-
face tension force (-5.74 µN) is considerably smaller than the
upward-directed forces, the contact pressure force (2.02 µN) and
the buoyancy force (6.36 µN), detailed in ESI-4†. Thus, with re-
spect to the balance of forces, an immediate bubble departure
would be expected, but this is not observed. This lends credence
to the existence of other downward-acting forces i.e. the elec-
tric force and the hydrodynamic force, as already discussed in the
present contribution and elsewhere in the literature35,36,52–54. In
this context, we would also like to point out that the Fritz equa-
tion6,13,68, derived based on the balance of forces (buoyancy and
surface tension) for a bubble attached to a solid surface, is not ex-
pected to apply in the presence of a micro-bubble carpet (Regimes
I and II). Additional effects from contact line pinning might fur-
ther influence the departure dynamics54 in Regime III.

Table 4, together with the spatial dependence of Fe and Fh

on δ (Fig. 2), helps gain a qualitative understanding of the most
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striking results, namely the existence and the features of the bub-
ble carpet (Regime I and II) and the bubble oscillations (Regime
II). We start by discussing the bubble carpet. The formation of
the carpet is obviously coupled to two constraints: (i) non-equal
rates of bubble nucleation (faster) and bubble-bubble coalescence
(slower), and (ii) not to high attractive forces, i.e. moderate po-
tentials and concentrations. As H2SO4 is an electrolyte that does
not inhibit coalescence49,69, issue (i) is fulfilled. The microbub-
bles in the carpet have a typical lifetime of O(µs), and the carpet
thickness δ increases linearly over time at a given c and φ , see Fig.
6b. This growth of the carpet relates to the fact that the buoyancy
force which scales like R3 cannot be fully compensated for by the
weaker growing hydrodynamic and electric forces, which scale
with R2. As a result, the quasi-equilibrium position of the grow-
ing bubble, which is equivalent to the carpet thickness, increases
with time.

φ , V δ , µm I, mA W , µm ε, µm Fe, µN Fh, µN

-4 6.43 1.21 607 5.97 -0.48 -0.53
-5 3.86 1.09 608 6.23
-6 2.66 1.13 608 6.33 -0.55 -0.61
-8 0...1 1.24 611 5.50

Table 5 Impact of φ on the carpet thickness δ at comparable bubble
widths and elongations ε. Data depicted from Fig. 6 at a fixed bubble
radius of 305 µm; concentration 0.3 mol L−1. For spherical bubbles,
R = W/2, otherwise R is calculated as an equivalent radius. For two
cases, the electric and the hydrodynamic force, Fe and Fh, values as
obtained from simulations are listed (carpet coverage Θ = 99, surface
charge density σs = 1.32 mC/m2). For details of the simulations, see
Hossain et al.35.

Table 5 shows data of the carpet thickness δ extracted from
Fig. 6b at different potentials φ but at a fixed bubble radius R of
305 µm. With higher cathodic potentials φ , the carpet thickness
δ reduces; it reaches the resolution limit at -8 V. Most notably,
the current remains approximately constant. This implies that
according to Eq. (7) the reduction in the surface area (-dA), as-
sociated with the reduction in δ , is approximately compensated
for by the higher cathodic potentials. For two potentials, the nu-
merical values of the hydrodynamic force Fh and also the electric
force Fe as obtained from simulations are added in Table 5. Both,
Fe and Fh grow larger at higher cathodic potentials. Thus, the
simple scaling laws derived in Table 4 need to be extended to
include the strong influence of the carpet thickness on the elec-
tric and the hydrodynamic force, as documented in Fig. 2. Taking
into consideration that a carpet of microbubbles does not appear
at comparable conditions in microgravity42, it is quite likely that
the carpet thickness is mainly adjusted by the balance of Fb, Fe

and Fh, and Fg−g plays only a minor role.
This is also supported by the concentration dependence of δ

m
crit

shown in Fig. 7. When c increases, both the value of δ
m
crit and

φm1 decrease, i.e., the maximum occurs even with a smaller ca-
thodic potential (φ). Characteristic data in Fig. 7, summarized
in Table 6, are: δ

m
crit ∼ 14.3 µm at φm1 ∼ −4.5 V for c = 1 mol

L−1, and δ
m
crit ∼ 26.7 µm at φm1 ∼ −9 V for c = 0.3 mol L−1. No-

tably, φm1 correlates rather well with the maximum of the aver-

age current Ī (Fig. 5b and Table 6). Hence, the system adjusts
δ

m
crit(φm1, c) such that the current is nearly identical. Thus, at the

lower concentration or conductivity, a thicker carpet is needed for
the same current to occur. Therefore, we can again conclude that
the Marangoni forces are the same for the 26.7 µm carpet at 0.3
mol L−1 and the 14.3 µm at 1 mol L−1.

Two further observations support the role played by Fe in reg-
ulating the carpet thickness. Fig. 12 and Table 3 show that a
sudden jump in φ to larger negative values instantaneously com-
presses the carpet to a smaller δ . Finally, in Regime III, at high
cathodic potentials φ or high Fe, there is no carpet at all.

As a second important result of this work, three different bub-
ble growth regimes have been identified and characterized in
detail. The appearance of a specific growth mode depends on
the potential and concentration and was summarized in a regime
map (Fig. 11). The most striking phenomenon is the transitions
from Regime I to Regime II, in which the current oscillates.

The experiments offer evidence that the bubble position oscil-
lations in Regime II are coupled to the existence of the carpet.
First, there are no position oscillations in the carpet-free Regime
III, but they can be instantaneously initiated from Regime III by a
jump in the potential into the range where the carpet forms (for
details see ESI-3†, Fig. S2b). Second, the oscillations require a
certain minimum carpet thickness (Fig. 6b). Thus, one can hy-
pothesize that the carpet is the source of the perturbation when
the bubble is at a transient equilibrium position, triggering the
onset of the oscillations in the bubble position. Obviously, a suf-
ficiently high cathodic potential is the precondition to create the
required level of perturbation, as the oscillations do not occur at
a lower φ in Regime I. The perturbations most likely consist in
locally higher bubble nucleation and/or coalescence rates. As a
result, the bubble is probably kicked out of its transient equilib-
rium position at the symmetry line of the electrode. Buoyancy
wins for a short time and the bubble rises a short distance. The
resulting increase in carpet thickness δ leads to an increase in the
electric force Fe until a maximum is reached, see Fig. 2. Second,
as the larger δ allows a higher current to flow, the Marangoni
convection is intensified, which leads to a further reduction in
the pressure. Thus Fh increases and also pulls the bubble towards
the electrode. Third, the coalescence rate might also be increased
if the bubble is attracted to the electrode due to Fe and Fh.

Three feedback mechanisms seem to be at work, keeping
the oscillations running: (i) With decreasing δ , Fe becomes
weaker again36, and the current decreases. As a result, (ii) the
Marangoni force simultaneously diminishes. (iii) By contrast, the
buoyancy increases, pulling in the opposite direction, as the bub-
ble further grows by coalescence. Thus, another oscillation cycle
may start.

The dependence of t̄onset/T̄ and R̄∗ on the concentration, de-
picted in Fig. 8, shows a similar but mirror-symmetric behavior to
δ crit in Fig. 7. They decrease with increasing φ until minimum
values are reached at φm2. Thus, with growing φ the oscillations
set in earlier and hence at a smaller dimensionless bubble radius.
For | φ |>| φm2 | this trend reverses again and the start of the os-
cillations is shifted to later times and hence larger bubble sizes.
At φm2, the corresponding frequency of the bubble oscillations is
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c, mol L−1 δ
m
crit(φm1), µm φm1, V Ī, mA φm2, V R̄∗

min Rdetach, µm f (φm2), Hz

1.0 14.3 -4.5 -1.39 -5 0.712 513 135
0.3 26.7 -9 -1.55 -9 0.713 483 146

Fig. 7 Fig. 7 Fig. 5c Fig. 8 Fig. 8 Fig. 5a Fig. 8

Table 6 Quantitative data from Figs. 5, 7 and 8, which show, based on the example of two concentrations, the correlation between the maximum
carpet thickness δ

m
crit at φm1 and the minimum in the relative bubble radius R̄∗

min at which the oscillations set in, which occurs at φm2.

always at a maximum. This is plausible as the volume of the
electrolyte which needs to be displaced is small, hence the fluid
inertia, as the bubble size is minimal. The averaged frequencies
from Fig. 8c may attain maximum values of up to 170 Hz. The
disappearance of the oscillations in the current in Regime III fur-
ther supports the hypothesis that these fast oscillations require
the existence of a carpet that is able to quickly adapt its thickness
in time.

In the case of sessile gas bubbles beneath a heated wall, it is
known from other work that different modes of oscillatory bubble
deformation occur as the Marangoni number rises. Here, trans-
verse oscillations are found to occur first, earlier than axial os-
cillations, which are likely to be suppressed by the bubble-wall
contact. Consequently, much lower frequencies are also observed
than those found in our case70,71.
The similarities between Figs. 8 and 7 are addressed in Table 6
for two concentrations: 1 mol L−1 (black line) and 0.3 mol L−1

(green line). We note first that φm2 ≈ φm1. Thus, the minima of
t̄onset/T̄ and R̄∗ occur at nearly the same potential where δ

m
crit is

attained. Second, the bubble radii at which the earliest onset oc-
curs (R̄∗ ≈ 0.7) and the detachment radii (approx. 1000 µm) are
nearly the same, hence the oscillation frequencies ( f ∼ 140 Hz).
Third, as already mentioned above, the corresponding currents Ī
are identical, adjusted by the different carpet sizes δ . Thus the
question arises of why the bubble oscillations are nearly identi-
cal despite the vastly different values of c and φm2 in Table 6. As
the ratio between buoyancy and the attracting forces is probably
decisive, and buoyancy is nearly the same in both cases, the sum
of the attracting forces FM and Fe needs to be the same. Indeed,
the lower concentration (0.3 mol L−1) leading to a lower surface
charge is compensated for by a higher φ (-9 V) to approach a com-
parable Fe to (1 mol L−1, -5 V), while FM is the same on average,
as the average current in both cases is similar.

6 Summary and conclusions
The dynamics of H2 bubbles was studied at a Pt micro-electrode
in an acidic electrolyte for a broad range of cathodic potentials φ

and concentrations c. This allowed us to probe the bubble behav-
ior subject to hitherto unexplored ranges of the relevant forces
governing bubble detachment (cf. Section 3).

We were able to show that beside the classic monotonic bubble
growth, termed Regime I, two further regimes exist (Fig. 11). In
the second, Regime II, the apex of the bubble oscillates in phase
with the electric current. Regime III is characterized again by
monotonic growth, but coupled to major bubble deformations. In
all three regimes, the exponent x, describing the increase in the
bubble radius over time, R(t) = β tx, can differ from the classi-

cal ones, x = 1/3 (x = 1/2) when the bubble growth is controlled
by coalescence (diffusion). Exponents even down to x = 1/4 are
found when the growth rate is determined by the geometry in the
case of large bubbles significantly exceeding the electrode diam-
eter. Overall, the bubble detaches later and at a larger size as the
cathodic potential and concentration increase.

Furthermore, we were able to resolve the fast micro-scale dy-
namics of the bubble carpet, which is considered to be the con-
necting element between Regimes I and II. At each (φ , c) combi-
nation, the carpet thickness increases during the bubble growth
until a value δcrit is reached at detachment (Fig. 6). For a given
concentration, δ crit varies in an inverse-parabolic form with the
cathodic potential (Fig. 7). This striking behavior, together with
the immediate compression of the carpet upon a sudden jump in
the potential (Fig. 12), substantiates the hypothesis that the car-
pet thickness is adjusted by three forces: (i) buoyancy, leading
finally to detachment, (ii) the electric force and (iii) the hydro-
dynamic forces which both attract. The increase in the latter two
forces with the cathodic potential causes the carpet to disappear
at high potentials, marking the transition to Regime III.

One further important result is the characterization of the re-
markable oscillatory growth regime, Regime II. For certain (φ , c)
combinations (Fig. 11), the monotonic change in the current is
replaced at the time tonset by an oscillatory change which occurs
in phase with oscillations in the bubble position on top of the
microbubble carpet. For each concentration, the onset time of os-
cillatory growth varies in a now parabolic like manner with the
cathodic potential. The earliest onset was found at already 20%
of the bubble lifetime, coupled with the highest frequencies (up
to 170 Hz).

The improved understanding of the above-mentioned forces in
terms of spatial variation (Fig. 2) and scaling (Table 4) makes
it possible to hypothesize the origin of the oscillations. The per-
turbation required to trigger the oscillations is seen in local vari-
ations of the bubble nucleation/coalescence rate in the carpet at
a sufficiently high cathodic potential. This kicks the bubble out
of its quasi-static equilibrium position. Buoyancy forces the bub-
ble to rise. As the electric and hydrodynamic forces both increase
with the distance between the bubble and the electrode (Fig. 2),
they are able to attract the bubble to the electrode again, giv-
ing rise to another oscillation cycle. One unexplored issue is the
forces exerted by coalescing bubbles. Here, new methods need to
be developed to tackle this highly dynamic processes taking place
on small length scales.

As micro-electrodes serve as a model for the electrocatalytic
sites in porous electrodes, the present results not only consider-
ably extend our understanding of the forces that determine bub-
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ble detachment, but might be informative regarding the further
improvement of porous catalysts.

Conflicts of interest
There are no conflicts to declare.

Acknowledgments
This project is supported by the German Space Agency (DLR) with
funds provided by the Federal Ministry of Economics and Technol-
ogy (BMWi) due to an enactment of the German Bundestag under
Grant No. DLR 50WM1758 (project MADAGAS) and Grant No.
DLR 50WM2058 (project MADAGAS II), the Federal State of Sax-
ony in terms of the "European Regional Development Fund" (H2-
EPF-HZDR), the Helmholtz Association Innovation pool project
"Solar Hydrogen" and the Hydrogen Lab of the School of Engi-
neering of TU Dresden. We thank Alexander Babich for fruitful
discussions.

List of Symbols

−→a Bubble acceleration, m2 s−1
−→
j Local current density vector, A m−2

−→u Electrolyte flow velocity, m s−1

A Electrode area, m2

c Electrolyte concentration, mol L−1

d Bubble diameter, m
dF Fritz’s diameter, m
E Electric field, N m−1

f Oscillation frequency, Hz
Fb Buoyancy force, N
Fe Electric force, N
Fh Hydrodynamic force, N
Fi Forces acting on the bubble, N
Fs Surface tension force, N
Fcp Contact pressure force, N
Fg−g Carpet-bubble interaction, N
g Gravitational acceleration, m s−2

H Bubble height, m
I Electric current, A
l Current path length, m
m Inertia of the motion, kg m2

ma Added mass, kg
mb Mass of the bubble, kg
ph Hydrodynamic pressure, Pa
R Bubble radius, m
rc Contact radius, m
Re Micro-electrode radius, m
Rel Ohmic resistance, kg m2 s−3 A−2

Ronset Bubble radius upon the start of the oscillations i.e.
at tonset , m

SD Standard deviation
T Lifetime of the bubble, s
t Time, s
t1 First appearance of the carpet, s
tcrit Instant of time shortly before detachment, s

tonset Start of the oscillations, s
Tosc Duration of the oscillations, s
U Bubble interface velocity, m s−1

V Bubble volume, m3

Vonset Bubble volume upon the start of the oscillations
i.e. at tonset , m3

W Bubble width, m
x Power exponent of the power law
Greek Symbols
α Thermal diffusivity of the electrolyte, m2 s−1

β Growth coefficient of the power law
βV Volumetric thermal expansion coefficient, m3 K−1

δ Carpet thickness, m
∆ρ Gas-electrolyte density difference, kg m−3

δcrit Carpet thickness shortly before detachment i.e. at
tcrit , m

δonset Carpet thickness upon the start of the oscillations
i.e. at tonset , m

γ Surface tension, N m−1

κel Electric conductivity of the electrolyte, S/m
µ Electrolyte dynamic viscosity, Pa s
−→
τh Hydrodynamic boundary stress, N m−2

φ Cathodic potential with respect to reference elec-
trode, V

φc Cell voltage, V
φm1 Cathodic potential providing the local maximum

of δcrit in Fig. 7, V
φm2 Cathodic potential providing the local maximum

of f in Fig. 8, V
ρg Hydrogen gas density, kg m−3

ρl Electrolyte density, kg m−3

σs Surface charge density, C m−2

Θ Electrode coverage, 1
θ Contact angle, ◦

ε Bubble elongation, m
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