Curvilinear phenomena in magnetization dynamics

HELMHOLTZ ZENTRUM

DRESDEN ROSSENDORF

Alexander von Humboldt Stiftung/Foundation

J. A. Fernandez-Roldan¹, M. Quintana^{1,2}, S. Shakeel¹, O. Volkov¹, O. Pylypovskyi¹, E. S. Oliveros-Mata¹, F. Kronast³, M.-A. Mawass³, C. Abert⁴, D. Suess⁴, D. Erb¹, J. Fassbender¹, and D. Makarov¹ ¹Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany · ²CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain · ³Helmholtz-

Zentrum Berlin für Materialien und Energie, Berlin, Germany · ⁴Physics of Functional Materials, University of Vienna, Vienna, Austria.

Motivation

Curvilinear magnetism has been attracting attention due to the vast range of phenomena that are appealing in stretchable and magnetoelectric devices, microrobots, sensors, flexible memories and nanoelectronics [1-5].

These phenomena encompass exchange- and Dzyaloshinskii-Moriya (DMI)-induced interactions that typically result in topological magnetization patterning in thin shells, symmetry breaking, and pinning of domain walls [1-9]. However, less attention has been paid to the role of the curvilinear effects in the magnetization dynamics [4]. For application development, spin-orbit torques provide an alternative way to manipulate magnetic domain walls and magnetization [10, 11] with reduced power consumption.

Here we present first results in stray field calculation in curvilinear geometries, and domain wall tilts in single 100 nm wide 2 nm thin periodically corrugated strips of CrOx/Co/Pt with average curvature of 0.06 nm⁻¹.

Fabrication

$$\overrightarrow{e_{z}} \xrightarrow{\overrightarrow{e_{y}}} \overrightarrow{e_{x}} \xrightarrow{\overrightarrow{e_{1}}} A=1 \text{ nm}$$

$$\lambda = 36 \text{ nm}$$
Flattening
$$\lambda' \approx 37.1 \text{ nm}$$

Curvilinear effects emerge as effective anisotropies and an additional exchange-induced DMI,

$$w_{ANIS}^{total} = (-K_{ex} - K_{rip})m_2^2 + (K_{DMI} - K_3)m_n^2 - K_{1,shape}m_x^2; \qquad w_{DMI}^{ex} = 2A_{ex}k_1(m_1\frac{\partial m_n}{\partial x_1} - m_n\frac{\partial m_1}{\partial x_1})$$

where

- k_1 is the curvature and A_{ex} the exchange stiffness.
- $K_{ex} = k_1^2 A_{ex}$, and $K_{DMI} = Dk_1$ are the exchange-induced and DMI-induced anisotropies, respectively.
- K_3 , $K_{1,shape}$ and K_{rip} are the perpendicular anisotropy, the shape anisotropy and the intra-Ripple dipolar interaction.

Si corrugated templates at HZR: LEI instrument

- Ion species: Ar+ . Ion energy: 250 eV
- Incidence angle: 45°, 48°, 50° *
- Nom. ion flux: 10^{15} cm⁻²s⁻¹ Nom.fluence: 10^{18} cm⁻²

Sputter deposition with BESTEC at RT Ar 8-10⁻⁴ mbar

• Si/CrOx (5 nm)/Co (1 nm)/Pt (2 nm)

• $P_{CrOx} = 100 \text{ W}. P_{Co} = 75 \text{ W}. P_{Pt} = 25 \text{ W}$

Domain wall tilt measurement from X-ray Magnetic Circular Dichroism imaging

• The stabilization of a dynamic domain wall tilt of the Thiavielle model by means of granular defects explains only the experimental values in the grey region up to a maximum theoretical angle of 16° in Volkov et al. [11].

- However, the large domain wall tilt values in the yellow region could be only possible in the presence of exchange- and DMI-induced curvilinear effects.
- To unravel the specific mechanism leading to larger tilt values we are carrying out three modelling approaches with mumax, SLaSI and MagnumFe.

Micromagnetic modelling with

mumax

MagnumFe

Statistics with MagnumFe are leading to a complex landscape of domain wall tilts, that requires statistics for understanding the curvilinear mechanism behind.

We consider a flat stripe with effective curvilinear interactions, relax the system for > 100 different initial conditions, and make statistics.

- These results indicate that large domain wall tilts could be explained by means of exchange-induced and DMI-induced interactions.
- However, Intra-ripple dipolar energy is neglected.

Following a similar approach, we are considering a flat stripe with effective curvilinear interactions and relax the system for different initial domain wall conditions in our home-made Spin Lattice System (SLaSi).

- SLaSi enables customizable interfacial DMI and anisotropies, including spatial gradients.
- SLaSi provides scale-free modelling in units of exchange length

References

[1] D. Makarov, et al., Advanced Materials 34, 2101758 (2022)
[2] D. Sheka, et al., Small 18, 2105219 (2022)
[3] D. Sander et al., J. Phys. D: Appl. Phys. 50, 363001 (2017).
[4] E. Y. Vedmedenko, et al., J. Phys. D. Appl. Phys. 53, 453001 (2020).
[5] D. Makarov et al., Applied Physics Reviews 3, 011101 (2016).
[6] E. Berganza et al., Sci. Rep. 12, 3426 (2022)
[7] E. Berganza et al., Nanoscale 12, 18646 (2022)
[8] J. A. Fernandez-Roldan et al., APL Materials 10, 111101 (2022)
[9] J. A. Fernandez-Roldan et al., Sci. Rep. 9, 5130 (2019).
[10] O. V. Pylypovskyi et al., Sci. Rep. 6, 23316 (2016).
[11] O. M. Volkov et al., Phys. Rev. Appl. 15, 034038 (2021)

Institute of Ion Beam Physics and Materials Research - FWID

Dr. Jose A. Fernandez-Roldan · j.fernandez-roldan@hzdr.de · www.hzdr.de

