
Structure prediction of iron hydrides at high pressures with
machine-learned interatomic potentials

Hossein Tahmasbi,1 Kushal Ramakrishna,1 Mani Lokamani,1 Mandy Bethkenhagen,2 and Attila Cangi1

1Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf, Görlitz, Germany
2Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria

References

[1] F. Li et al., RSC Advances 7, 12570 (2017).
[2] E. I. Isaev et al., PNAS 104, 9168 (2007).
[3] J. V. Badding et al., Science 253, 421 (1991).
[4] J. Behler, J. Chem. Phys. 134, 074106 (2011).
[5] S. Goedecker, J. Chem. Phys. 120, 9911 (2004).

[6] J. Behler et al., Phys. Rev. Lett. 98 (2007).
[7] M. Amsler et al., Comput. Phys. Commun. 256, 107415 (2020).
[8] G. Kresse et al., Phys. Rev. B 47, 558 (1993).
[9] A. Togo et al., Scripta Materialia 108, 1 (2015).

[10] H. Mirhosseini et al., Comput. Mater. Sci. 197, 110567 (2021).

1) Motivation
• Understanding the chemical composition of Earth’s core is a

grand challenge in geoscience and materials science.

• Earth’s inner core is believed to be composed of iron-based
alloys; however, its density is 2-5% lower than of pure iron [1].

• Hydrogen is a fundamental element in the Earth’s core and the
primary contributor to the observed density deficit in the inner
core.

• Previous theoretical and experimental studies have shown that
the dhcp phase of FeH is stable at low pressures (10–40 GPa)
and undergoes phase transitions to the hcp and fcc phases at
pressures of up to 80 and 100 GPa, respectively [2, 3].
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• Machine-learned interatomic potentials (ML-IAPs) enable
modeling the potential energy surfaces (PESs) of large systems.

• New (meta)stable structures and phenomena can be discovered
on larger length and time scales.

• Here: We conducted an extensive structure search of bulk
FeH systems by globally sampling the PESs using a highly
transferable ML-IAP over a pressure range of 0 − 100 GPa.

3) Neural network potential
Training:

• Train a HDNN interatomic potential with PyFLAME using
a diverse dataset of atomic configurations

• Training data set: 33,338 clusters and crystalline
structures with different sizes and symmetries

• Validation data set: 20% unseen structures from the
training data set
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• NN architecture: 70 − 20 − 20 − 1, 1861 trainable
parameters

• Descriptors: 16 radial and 54 angular symmetry
functions [4]

• RMSEs of energy and atomic forces: 30 meV/atom,
0.308 eV/Å

Validation:

• Geometry optimization

• Global optimization using MH to screen the PESs of
crystal structures of FeH of various sizes and pressures

2) Methods

Global optimization:

• Minima hopping (MH) method to (systematically) explore
the PESs [5]
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High-Dimensional Neural Network (HDNN) Potential:

• Atom-centered (Behler) method [6]
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• Implementation:https://gitlab.com/flame-code/FLAME [7]

• DFT calculations: VASP [8] with the PBE
functional

• Phonon dispersions: PHONOPY [9]

Workflow diagram of the automated approach for developing
neural network interatomic potentials:
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• Data generation and potential construction in an iterative
process of training NN potential and crystal structure
prediction

• Training process: six sets with different pressures
P = 0, 10, 20, 40, 50, 80 GPa

• High transferability to systems with different boundary
conditions and at a range of pressures 0− 100 GPa

• Implementation:https://gitlab.com/flame-code/PyFLAME [10]

4) Structural search

• A systematic search on the PESs of FeH with simulation cells up to 18
f.u. at pressures 0− 100 GPa (in steps of 10 GPa)

• Refining the results at the level of DFT (energy and space group)

• All known structures in databases are found. We also found a dense
spectrum of low-enthalpy polymorphs (<30 meV/atom) for stoichiometric
FeH.
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• Some of the new low-enthalpy polymorphs of FeH, new modifications
and stacking of the known dhcp, hcp, and fcc structures, at P = 20
GPa

S02 S03

S04 S05

• Motifs: MgO6 octahedra and trigonal prisms

• Connectivity of the octahedra: edge-sharing
and face-sharing

• These motifs are stacked on top of each other
in various sequences and directions (AB, ABC,
ABCD, . . . ).

5) Phase diagram
• Without corrections of zero-point vibrations of H atoms!

• The relative enthalpy shows the distance from the convex
hull as a function of P .
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Conclusion and outlook
• We constructed a highly transferable HDNN potential for

exploring the energy landscape of iron hydride across a
range of pressures (0− 100 GPa).

• We investigate the phase diagram of iron hydride based
on large-scale structure prediction using the ML-IAP.

• We find a dense spectrum of novel low enthalpy
polymorphs across the considered pressure range.

• Free energy calculations could change the energy order
of structures and phase transitions.

• We can now investigate the phase diagram and PESs of
iron superhydrides FeHn (n ≥ 3) which exhibit special
electrical properties such as superconductivity.
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