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Goal
Evaluate large QED-processes (superfactorial scaling)

For this, generate optimized code for a specific machine
Use high-level knowledge about the problem

Experiment Simulation
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Motivation

State of the art implementations fail to
employ strategies from computer
science

use hardware for larger processes
be platform independent and
portable
use heterogeneous architectures

We try to instead

⇒ use graph representation for high-
level optimizations

⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code
⇒ benefit from all available hardware
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The Pipeline - Top Down
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The Pipeline - The (Naive) Directed Acyclic Graph (DAG)
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The Pipeline - The (Naive) DAG, Reduced
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Optimize the DAG
What are we optimizing?

Compute Effort
Data Transfer
Compute Intensity = Compute Effort

Data Transfer
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Implementation - Structure
Several Components:

Graph and Operations

□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.
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to create a topological
ordering of tasks for each device

For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function
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Outlook

The basic code structure is done, now:
Add QED Model
Compare different optimization algorithms and estimators
Determine a machine’s scaling functions and working point graph using
microbenchmarks
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