
DAG Optimizations for Feynman Diagrams of
High-Multiplicity Scattering Processes in Julia

Anton Reinhard1,2, Simeon Ehrig1,2, Uwe Hernandez Acosta1,2, René Widera1

1Helmholtz-Zentrum Dresden-Rossendorf, 2Center for Advanced Systems Understanding

09.11.2023



2/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Goal
Evaluate large QED-processes (superfactorial scaling)

For this, generate optimized code for a specific machine
Use high-level knowledge about the problem

Experiment Simulation



2/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Goal
Evaluate large QED-processes (superfactorial scaling)
For this, generate optimized code for a specific machine

Use high-level knowledge about the problem

Experiment Simulation



2/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Goal
Evaluate large QED-processes (superfactorial scaling)
For this, generate optimized code for a specific machine
Use high-level knowledge about the problem

Experiment Simulation



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science

use hardware for larger processes
be platform independent and
portable
use heterogeneous architectures

We try to instead

⇒ use graph representation for high-
level optimizations

⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code
⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science

use hardware for larger processes
be platform independent and
portable
use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations

⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code
⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science
use hardware for larger processes

be platform independent and
portable
use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations

⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code
⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science
use hardware for larger processes

be platform independent and
portable
use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations
⇒ scale the code with the process

⇒ support multiple platforms (CPU,
GPU) with generic code

⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science
use hardware for larger processes
be platform independent and
portable

use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations
⇒ scale the code with the process

⇒ support multiple platforms (CPU,
GPU) with generic code

⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science
use hardware for larger processes
be platform independent and
portable

use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations
⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code

⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science
use hardware for larger processes
be platform independent and
portable
use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations
⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code

⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation

State of the art implementations fail to
employ strategies from computer
science
use hardware for larger processes
be platform independent and
portable
use heterogeneous architectures

We try to instead
⇒ use graph representation for high-

level optimizations
⇒ scale the code with the process
⇒ support multiple platforms (CPU,

GPU) with generic code
⇒ benefit from all available hardware



3/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Motivation



4/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

The Pipeline - Top Down



5/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

The Pipeline - Top Down



6/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

The Pipeline - The (Naive) Directed Acyclic Graph (DAG)



7/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

The Pipeline - The (Naive) DAG, Reduced



8/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Optimize the DAG
What are we optimizing?

Compute Effort
Data Transfer
Compute Intensity = Compute Effort

Data Transfer



8/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Optimize the DAG
What are we optimizing?

Compute Effort

Data Transfer
Compute Intensity = Compute Effort

Data Transfer



8/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Optimize the DAG
What are we optimizing?

Compute Effort
Data Transfer

Compute Intensity = Compute Effort
Data Transfer



8/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Optimize the DAG
What are we optimizing?

Compute Effort
Data Transfer
Compute Intensity = Compute Effort

Data Transfer



8/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Optimize the DAG
What are we optimizing?

Compute Effort
Data Transfer
Compute Intensity = Compute Effort

Data Transfer



8/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Optimize the DAG
What are we optimizing?

Compute Effort
Data Transfer
Compute Intensity = Compute Effort

Data Transfer



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations

□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations

□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations

□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations

□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG

□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion

□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction

□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer

□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer

□ Simulated Annealing
□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices

□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices
□✓ NUMA Nodes

□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices
□✓ NUMA Nodes
□ Nvidia GPUs

□ AMD GPUs
□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices
□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs

□ etc.

Cost Estimators

□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices
□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs

□ etc.

Cost Estimators
□✓ Global Compute and Data

□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices
□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs

□ etc.

Cost Estimators
□✓ Global Compute and Data
□ Scheduled time estimation

□ Microbenchmark-based
□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing

□ etc.

Devices
□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs

□ etc.

Cost Estimators
□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based

□ etc.



9/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Structure
Several Components:

Graph and Operations
□✓ DAG
□✓ Node Fusion
□✓ Node Reduction
□✓ Node Split

Optimizer
□ Greedy optimizer
□ Simulated Annealing
□ etc.

Devices
□✓ NUMA Nodes
□ Nvidia GPUs
□ AMD GPUs
□ etc.

Cost Estimators
□✓ Global Compute and Data
□ Scheduled time estimation
□ Microbenchmark-based
□ etc.



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information

Use scheduler interface

to create a topological
ordering of tasks for each device

For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information

Use scheduler interface

to create a topological
ordering of tasks for each device

For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information

Use scheduler interface

to create a topological
ordering of tasks for each device

For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information
Use scheduler interface

to create a topological
ordering of tasks for each device
For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information
Use scheduler interface to create a topological
ordering of tasks for each device

For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information
Use scheduler interface to create a topological
ordering of tasks for each device
For each task in the ordering, generate code
using the scheduled device

Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information
Use scheduler interface to create a topological
ordering of tasks for each device
For each task in the ordering, generate code
using the scheduled device
Evaluate the function code

into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information
Use scheduler interface to create a topological
ordering of tasks for each device
For each task in the ordering, generate code
using the scheduled device
Evaluate the function code into a function



10/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Implementation - Code Generation

Get graph, a scheduler, and machine information
Use scheduler interface to create a topological
ordering of tasks for each device
For each task in the ordering, generate code
using the scheduled device
Evaluate the function code into a function



11/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Results - Benchmark AB→ABBB - Proof of Concept



11/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Results - Benchmark AB→ABBB - Proof of Concept



11/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Results - Benchmark AB→ABBB - Proof of Concept



11/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Results - Benchmark AB→ABBB - Proof of Concept



12/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Outlook

The basic code structure is done, now:
Add QED Model
Compare different optimization algorithms and estimators
Determine a machine’s scaling functions and working point graph using
microbenchmarks



13/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Acknowledgements

Collaborators:
Dr. Uwe Hernandez Acosta1,2

Simeon Ehrig1,2

René Widera2

1Center for Advanced Systems Understanding (CASUS)
2Helmholtz-Zentrum Dresden-Rossendorf (HZDR)



14/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

References
[1] Tim Besard, Christophe Foket, and Bjorn De Sutter. “Effective extensible programming:

unleashing Julia on GPUs”. In: IEEE Transactions on Parallel and Distributed Systems 30.4
(2018), pp. 827–841.

[2] Valentin Churavy et al. “Bridging HPC Communities through the Julia Programming Language”.
In: arXiv preprint arXiv:2211.02740 (2022).

[3] John Clark and Derek Allan Holton. A first look at graph theory. Reprint. Hackensack [u.a.]:
World Scientific, 2005. isbn: 9789810204891. url:
http://slubdd.de/katalog?TN_libero_mab2.

[4] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means clustering algorithm”.
In: Journal of the royal statistical society. series c (applied statistics) 28.1 (1979), pp. 100–108.

[5] Stefan Karpinski et al. Why we created julia. Feb. 2012. url:
https://julialang.org/blog/2012/02/why-we-created-julia/.

[6] Jinhong Luo et al. “Learning to optimize dag scheduling in heterogeneous environment”. In:
arXiv preprint arXiv:2103.06980 (2021).

[7] Andrea Valassi et al. “Design and engineering of a simplified workflow execution for the
MG5aMC event generator on GPUs and vector CPUs”. In: EPJ Web of Conferences. Vol. 251.
EDP Sciences. 2021, p. 03045.

http://slubdd.de/katalog?TN_libero_mab2
https://julialang.org/blog/2012/02/why-we-created-julia/


15/15 DAG Optimizations for Feynman Diagrams of High-Multiplicity Scattering Processes in Julia · 09.11.2023

Backup


	Goal
	Motivation
	The Pipeline - Top Down
	The Pipeline - Top Down
	The Pipeline - The (Naive) Directed Acyclic Graph (DAG)
	The Pipeline - The (Naive) DAG, Reduced
	Optimize the DAG
	Implementation - Structure
	Implementation - Code Generation
	Results - Benchmark ABABBB - Proof of Concept
	Outlook
	Acknowledgements
	References
	References
	Backup



