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Abstract

To manage the propagation of infectious diseases, particularly fast-spreading

pandemics, it is necessary to provide information about possible infected places

and individuals, however, it needs diagnostic tests and is time-consuming and

expensive. To smooth these issues, and motivated by the current Coronavirus

disease (COVID-19) pandemic, in this paper, we propose a learning-based sys-

tem and a hidden Markov model (i) to assess hazardous places of a contagious

disease, and (ii) to predict the probability of individuals’ infection. To this end,

we track the trajectories of individuals in an environment. For evaluating the

models and the approaches, we use the Covid-19 outbreak in an urban envi-

ronment as a case study. Individuals in a closed population are explicitly rep-

resented by their movement trajectories over a period of time. The simulation

results demonstrate that by adjusting the communicable disease parameters,

the detector system and the predictor system are able to correctly assess the

hazardous places and determine the infection possibility of individuals and clus-

ter them accurately with high probability, i.e., on average more than 96%. In

general, the proposed approaches to assessing hazardous places and predicting

the infection possibility of individuals can be applied to contagious diseases by

tailoring them to the influential features of the disease.

Keywords: Machine Learning, Trajectory Tracking, Patient Prediction,

Hidden Markov Model, Covid-19, Trajectory Clustering

1. Introduction

Efficiently managing contagious diseases needs online and updated informa-

tion about infected peoples and hazardous places. For unknown viruses such

as the fast-spreading severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and the related disease, coronavirus disease 2019 (COVID-19), finding

a pattern of transmission and spreading in a short period is not possible. Thus,
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the key managing advice of the World Health Organization (WHO) is to per-

form more tests and isolating the positive cases (https://www.who.int/director-

general/speeches/detail/who-director-general-s-opening-remarks-at-the- media-

briefing-on-covid-19—16-march-2020). While, the test capacity in the countries,

particularly for developing countries is limited, and consequently, preventing the

epidemic outbreak and controlling and managing the propagation of them are so

difficult. To smooth this issue, in this paper we develop efficient learning-based

systems using the movement trajectories of the individuals whose diagnostic

status is known (or will be known soon) and diagnose the hazardous places of a

city. Further, by having such information and movement trajectories of people,

it is possible to determine the probability of an individual being infected.

So, in this paper, we focus on the following research questions:

1. Where are the infected places of a contagious disease in a city?, and, How

much is each place infected?

2. How much is the patient possibility for a person who moves around a city?

To answer these questions, we first accommodate the required inputs. That is,

we introduce a structure which makes it easy to work with the dynamic environ-

ment of the problem. Then, we introduce two learning-based systems; one learns

the hazardous possibility of each place, and one explores the trajectory tracking

of an individual and computes the patient likelihood via a hidden Markov model

(HMM)-based approach. To this end, we gather the movement information of a

group of people in a city. We compute a disease hazardous probability for each

place and find risky places. Then, by investigating the moving trajectory of a

new (given) individual, we predict the probability of he/she being infected.

Both the proposed learning systems are general frameworks with inputs that

can be customized for communicable diseases by setting propagation parame-

ters such as transmission rate and convalescence. In this paper, we incorporate

Covid-19’s infection and propagation parameters. The systems provide useful

information from the contaminated places in a city and the infection rate of

individuals whose movement trajectories are available. Such information is very
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practical in establishing and updating social and personal protocols to manage

and control the disease. Further, the results provided by the predictor sys-

tem can be efficiently utilized in pooling approaches, that is, grouping a set of

individuals in one pool and perform a test on the combined samples of them

(Mutesa et al., 2020). Such approaches are very time and cost-saving if the pools

contain a few infected individuals (Escobar et al., 2020). So, it is very helpful

if the people with a high probability of prevalence are tested individually and

the people with low prevalence probability are tested in groups. The approach

proposed in this paper provides such prevalence probabilities for the individuals

whose movement history is available.

In this paper, we suggest a detector system to assess the hazardous places of a

contagious disease in a city by using a supervised learning-based approach on the

individuals’ tracking trajectories. To obtain the individuals’ trajectories, we use

the GPS information of a set of volunteers walking around a city. The detector

system can set up on a warning mobile device to notify the hazardous places.

Furthermore, we propose a predictor system, which predicts the possibility of

getting the disease without testing. The state-based nature of the predictor

system’s issues such as having uncertain knowledge about a person who does

not a diagnostic test, a sequential behavior of a person in the environment, local

observing in the environment, permanently transmission to patient state, and

probabilistic transmission from a state to another one are the reasons that have

convinced us to propose an HMM-based approach to develop such predictor

system.

It is notable, in recent years mobile computing and mobile technology are

now more connected, sophisticated, location-based, personal, and powerful than

ever. Positioning technologies that serve mobile phones such as the cellular

antenna, global navigation satellite systems and GPS, and the Wi-Fi positioning

system provide increasingly accurate and continuous geographic positions of

mobile devices. So, it is easy to track the location of a massive number of

mobile devices. We know that because of security and privacy issues, some

people do not allow access to their location all the time in a period. However,
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the proposed system would handle it if they let to have their movement paths

partially for a while. Also, it only requires the individuals’ trajectories without

knowing the ID of the persons.

This paper is organized into six sections. In the next section, the state

of the art in the relevant area is reviewed. Preliminaries and definitions are

introduced in the section 3. Section 4 explains the proposed approaches in this

paper. Section 5 includes the results of applying the proposed method on Covid-

19 cases and the analysis of the research results. Finally, Section 6 concludes

the paper and presents future work.

2. Related Work

Machine Learning (ML) approaches have been significantly used to design

detection and prediction systems (Ghaffari & Afsharchi, 2020). Detection sys-

tems extract features of a phenomenon, like a disease, and detect the possibility

of occurring by having some observations and witnesses. Prediction systems

are used to predict the progression of the phenomenon and its impact on dif-

ferent aspects. Since some features may are observable and some are hidden,

the pattern of phenomena can be used for both the detection and prediction

systems. Consequently, ML approaches that learn based on the patterns allow

us to study both observed features (e.g., a patient with symptoms of a disease)

and hidden features (e.g., an infected person without symptoms of a disease).

Several ML-based approaches for automatic detection of communicable dis-

eases such as Covid-19 have been suggested utilizing X-ray and Computer To-

mography (CT) images (Ismael & Şengür, 2020; Apostolopoulos & Mpesiana,

2020; Gozes et al., 2020; Li et al., 2020a; Wang et al., 2020; Wynants et al.,

2020). Also, prognostic prediction approaches based on ML algorithm and

Markov model (MM) have been proposed (Choudhury et al., 2020; Yan et al.,

2020; Roda et al., 2020). Randhawa et al. (2020) combined supervised ML with

digital signal processing for genome analyses, augmented by a decision tree ap-

proach to the ML component, and a Spearman’s rank correlation coefficient
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analysis for result validation. Ahamad et al. (2020) developed a supervised ML-

based method to identify the presentation features predicting Covid-19 disease.

They examined features such as details of the individuals concerned, e.g., age,

gender, observation of fever, history of travel, and clinical details such as the

severity of cough and incidence of lung infection. There are also studies on

predicting the progression of Covid-19 using MM (Atkeson, 2020; Liu et al.,

2020). Rao & Vazquez (2020) introduced a recognition system based on several

ML predictive models to explore the impacts of Covid-19 on people’s mental

health. Ong et al. (2020) applied the Vaxign reverse vaccinology and Vaxign-

ML tools to predict Covid-19 vaccine candidates. Tian & Zhang (2020) assessed

the performance of three ML models including HMM, hierarchical Bayes model,

and long-short-term-memory model (LSTM) to show a predictive model of the

disease would help allocate medical resources and determine social distancing

measures more efficiently. Li et al. (2020b) hypothesized that Deep Learning

(DL) approaches might be able to extract Covid-19’s specific graphical features

and provide a clinical diagnosis ahead of the pathogenic tests, thus they save

critical time for disease control. Perez & Dragicevic (2009) developed an agent-

based modeling approach that integrates geographic information systems (GIS)

to simulate the spread of a communicable disease in an urban environment, as

a result of individuals’ interactions in a geospatial context.

Recently, deep neural networks have shown remarkable performance in the

analysis of sequential data. Irio & Oliveira (2021) compared two innovative

methodologies to predict the future locations of moving vehicles when their cur-

rent and previous locations are known. They used two methodologies based on

the Bayesian network to infer the statistics of prior vehicles, trajectory data that

is further adopted in the estimation process, and a deep learning approach based

on Recurrent Neural Networks (RNNs). Priyanka et al. (2021) used Covid-19

time-series datasets, and with the help of deep learning, they suggested the

model for predicting confirmed positive, recovered and mortality of Covid-19

cases. They developed a prediction model using RNN in the first instance,

and subsequently, the second model was built using Long Short Term Memory
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Networks (LSTMs).

Ismael & Şengür (2020) suggested DL-based approaches to classify Covid-

19 and healthy chest X-ray images. The proposed methods have been used

deep feature extraction, fine-tuning of pretrained convolutional neural networks

(CNN), and end-to-end training of a developed CNN model. Apostolopoulos &

Mpesiana (2020) suggested a DL-based method for the automatic detection of

the Coronavirus, utilizing a dataset of X-ray images from patients with common

bacterial pneumonia, confirmed Covid-19 disease, and normal incidents. They

detected various abnormalities in small medical image datasets by using trans-

fer learning. Li et al. (2020a) developed a DL model, Covid-19 detection neural

network, to extract visual features from volumetric chest CT exams for the de-

tection of Covid-19. Gozes et al. (2020) presented a system that utilizes robust

2D and 3D deep learning approaches, modifying and adapting existing artificial

intelligence (AI) models and combining them with clinical understanding, to

develop automated CT image analysis tools for detection, quantification, and

tracking of Coronavirus. The developed system can differentiate coronavirus

patients from those who do not have the disease. Wang et al. (2020) demon-

strated that non-identifiability in model calibrations using the confirmed-case

data was the main reason for wide variations of predictions on the Covid-19

epidemics.

Atkeson (2020) introduced an MM of the progression of Covid-19 in the

United States. This model allows for quantitative statements regarding the

trade-off between the severity and timing of suppression of the disease through

social distancing and the progression of the disease in the population. Liu et al.

(2020) reviewed the basic reproduction number (R0) of the Covid-19 by using

a stochastic Markov chain. They illustrated that R0 estimation depends on the

estimation method used as well as the validity of the underlying assumptions.

Yan et al. (2020) built a prognostic prediction model based on the XGBoost

ML algorithm to predict the mortality risk and presented a clinical route to the

recognition of critical cases from severe cases. Choudhury et al. (2020) created a

decision-analytic Markov state transition model to simulate the life of critically
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ill Covid-19 patients as they transitioned to either recovery or death. Rao &

Vazquez (2020) sampled and analyzed the Weibo posts using the approach of

online ecological recognition based on several ML predictive models. They ex-

plored the impacts of Covid-19 on people’s mental health to assist policymakers

to develop actionable policies and help clinical practitioners, e.g., social workers,

psychiatrists, and psychologists.

There are also several studies on predicting disease progression using var-

ious DL approaches. Hernandez-Matamoros et al. (2020) proposed models to

predict the evolution of Covid-19 epidemic by analyzing different geographi-

cal areas. Alaa & Schaar (2018, 2019) developed the phased attentive state

space (PASS) model of disease progression, a deep probabilistic model that cap-

tures complex representations for disease progression while maintaining clinical

interpretability. Unlike Markovian state-space models, which assume memory-

less dynamics, PASS uses an attention mechanism to induce ”memoryful” state

transitions, whereby repeatedly updated attention weights are used to focus on

past state realizations that best predict future states. Joint models to fore-

cast disease trajectories longitudinal over time suffer from limitations that arise

from a fixed model specification and computational difficulties when applied

to high-dimensional datasets. Lim & Schaar (2018) proposed a deep learning

approach to address these limitations, enhancing existing methods with the in-

herent flexibility and scalability of deep neural networks while retaining the

benefits of joint modeling. Pham et al. (2017) introduced DeepCare, an end-to-

end deep dynamic neural network that reads medical records, stores previous

illness history, infers current illness states and predicts future medical outcomes.

At the data level, DeepCare represented care episodes as vectors and models

patient health state trajectories by the memory of historical records. Bueno

et al. (2019) proposed a probabilistic framework based on HMM for predicting

disease dynamics guided by latent states.

Further, several studies have suggested probabilistic generative models and

providing individualized predictions of future disease progression.Fong et al.

(2020) developed an approach using Composite Monte-Carlo, which is enhanced
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by DL network and fuzzy rule induction for gaining better stochastic insights

about the epidemic development. Futoma et al. (2016) proposed a probabilistic

generative model to provide individualized predictions of future disease progres-

sion while jointly modeling the pattern of related recurrent adverse events. They

fitted their model using a scalable variational inference algorithm. Galagali &

Xu-Wilson (2018) presented an approach to subtype irregular patient data while

acknowledging the underlying progression of disease states. Their approach con-

sists of two components: a probabilistic model to determine the likelihood of a

patient’s observation trajectory and a mixture model to measure the similarity

between asynchronous patient trajectories. Kumar (2020) introduced a method

to collect large amounts of diagnostic data about cognitive processes in short pe-

riods of testing. The method is demonstrated by a task assessing an individual’s

use of attention and motor control. Nagesh et al. (2019) modeled and predicted

longitudinal glaucoma measurements using an interpretable, discrete state space

model. They presented a technique for incorporating spatio-temporal the reti-

nal nerve fiber layer thickness measurements obtained from a sequence of OCT

images into a longitudinal progression model. Neyja et al. (2017) presented an

Internet of Things (IoT)-based health care system implementation scheme us-

ing HMM chain and ElectroCardioGram sensors within the context of e-Health.

Vairavan et al. (2012) proposed an algorithm based on logistic regression and

HMM using vital signs, laboratory values and fluid measurements to develop an

improved patient-specific prediction of in-hospital mortality. Xiang et al. (2015)

presented a framework to predict potential risks for medical conditions as well as

its progression trajectory to identify the comorbidity path. The framework uti-

lizes patients’ publicly available social media data and presents a collaborative

prediction model to predict the ranked list of potential comorbidity incidences,

and a trajectory prediction model to reveal different paths of condition pro-

gression. Wang et al. (2022) proposed ARIMA, SARIMA and Prophet models

to predict daily new cases and cumulative confirmed cases in the USA, Brazil

and India over the next 30 days based on the COVID-19 new confirmed cases

and cumulative confirmed cases data set. Chumachenko et al. (2022) developed
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three statistical ML models for predicting the dynamics of the COVID-19 epi-

demic process. Further, they studied and compared effectiveness of the models

not only for COVID-19 but also for other infectious diseases.

HMM is a helpful technique for trajectory tracking systems such as recogni-

tion of complex object motion trajectories, and eye-tracking (Bashir et al., 2005;

Kim et al., 2020). Saini et al. (2020) used a genetic framework to choose the

optimal set of features for trajectory classification. Although the treatment of

most infectious diseases are known for medical scientists, and the transmission

ways and rate for the viruses are identified, there are a few recent emerging

diseases (such as Covid-19), which are unknown. In such cases, reverse engi-

neering is one of the recognition solutions, which obtain by studying disease

impact on society. Note that most of the previous studies in the literature

have suggested their approach for a specific disease. Since transmission of an

infectious disease may occur through several (but similar) pathways; through

contact with infected individuals, by water, airborne inhalation, through the

vector-borne spread, etc., we can develop a generalized solution to overwhelm

the similar challenges. The other reason is diagnostic testing problems, such

as being expensive, time-consuming, unreliable answers, and need to repeat.

Therefore, we introduce two systems, to provide infection information and haz-

ardous rate of different places of an environment, and to predict the probability

of an individual being infected.

3. Preliminaries and Definitions

In this paper, we propose two systems; the detector system to assess haz-

ard places, and the predictor system to predict the infected probability of an

individual by having his/her trajectory. Both the systems work based on the

movement trajectories of individuals in an environment like a city. We use a

graph to model the environment, a geometric path to model the trajectories,

and a layered data structure to consider the time in the real world. Table 1

includes all the symbols used in this paper.
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Table 1 Symbols and Definitions

Symbol Definition

G = (V,E) Corresponding graph of a city

V Set of vertices in G which include public places, hospitals, gas stations, etc.

E Set of edges in G which illustrates connection between the neighbors

P Set of patients

p A patiant individual p ∈ P

H Set of healthy individuals

h A healthy individual h ∈ H

U Set of people whose healthy or patient status is not known

u u ∈ U

m m ∈ P ∪ H ∪ U

T(m,t) The location of an individual m at time t

δ The latent period (day)

AP (p) The possibility of exposure of a virus in a place from a patient p

µi The ith (effective in infection or spreading) parameter of disease

ϕ(µi) The probability function of µi in AP (p)

RP (h) Possibility of reducing exposure of a virus in a place from a healthy individ-

ual h

θ(µi) The probability function of µi in RP (h)

GP (m) The possibility of getting the disease for an individual m

ω(µi) The probability function of µi in GP (m)

l A place in the modeled city

St(l) The hazardous rate of l at time t

n Number of time slots

Q Set of states of HMM

A Transition probability matrix of HMM

O Sequence of observations of HMM

B Sequence of observation likelihoods of HMM

π Initial probability distribution over states of HMM

αt Patient possibility of u at time slot t

d Notation for day

ρd The robability of an individual remains healthy after d days

σ Personal hygiene

β Patient ratio

C A constant number

γ Social distance

o Specific infection parameters of Covid-19

Let G = (V,E) be a corresponding graph of a city, where V is the set of

vertices (places in a city) that contains apartments, hospitals, bus and train

stations, shopping and sporting centers, etc. and E be the set of edges (the

connection between the places). G is assumed an unweighted graph because the

proposed systems learn based on the trajectories which represent the time that

an individual travels or stays in a connection or a place. Figure 1a illustrates

Sareyn city and Figure 1b demonstrates its corresponding extracted graph from

its map. Figures 1c and 1d illustrate ten healthy individuals and ten patient

individual trajectories in the city, respectively. The precision of modeling may
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change using two parameters: the number of nodes in the graph, and the number

of samples from the location of an individual in a period of time. Clearly, there

is a trade-off between the complexity of the models and these two concepts.

Although it is a challenge, we do not discuss it in this paper, and only focus on

the detector and predictor systems.

Figure 1 (a) Sareyn city’s map, (b) corresponding graph, (c) trajectories of

10 patients, and (d) trajectories of 10 healthy individuals (Davoodi & Ghaffari,

2021).

(a) (b)

(c) (d)

Formally, a trajectory is a curved path of an object follows after it is thrown

or shot into the air, or of an object that is traveling through space (https:// dic-

tionary.cambridge.org/dictionary /english/trajectory). So, it is a proper mod-

eling tool for mapping the traveling paths which depend on time. In this paper,

we consider a trajectory as a traveling path of a person through each time slot.
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Let function T(m,t) shows the location of person m at time slot t. Also, we

suppose three categories of individuals:

• P is the set of individulas who are patient, e.g., their diagnostic test answer

is positive

• H is the set of healthy individuals, e.g., their diagnostic test answer is

negative

• U is the set of individuals whose health status is unknown

Each infection disease has several specific properties such as transmission

possibility and transmission ways, period of impact of the virus, appearing time

of symptoms, curative period (if there is), etc. In this paper, we consider the

following assumptions.

• δ days needs to appear the disease symptoms,

• The starting time of the suffering is not recognizable,

• There is no surly curative,

• It is possible to recognize the patient by diagnostic tests.

We handle the second assumption using a probabilistic function, so we can

relax it easily in case that the starting time of the suffering is known. A place

does not have a self-potential to make hazard itself, but rather the patients

make the place hazardous. On the other hand, certain predicting of people’s

behavior is not possible, so the environment is dynamic and stochastic. Finding

features in common for these environments is a big challenge, and sometimes it

is impossible. Therefore, we suggest a method that works based on the environ-

ment’s state. Accordingly, when we call the hazard probability of a place, that

is one or more infected individuals stayed there for some time slots.

Disease transmission is divided into two parts; spread of the virus by a host,

and getting the disease by a healthy individual. The possibility of propagation

of a virus in a place from the host depends on several parameters such as the
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transition rate of the disease, personal hygiene, social distance and inattention

to the antiseptic area. Accordingly, exposure from a patient p ∈ P is determined

by:

AP (p) =

k∏
i=1

ϕ(µi), (1)

where ϕ(µi) is the probability function of ith (effective) parameter in infection

and it may have a constant, linear, polynomial, exponential, or geometric dis-

tribution. Note that not only the parameters and their effect change from one

disease to another one but also those would have diverse behaviors. Finding

these parameters and the corresponding functions are professional issues and

need medical experts, however, to focus on the objective in this paper, we just

use and apply findings and improvements on the disease.

As it is expected, the hazardous rate of a place increases by entering some

patients at that place. Also, it decreases when a healthy individual enters into

that place and remain healthy for a while. So, the place should be less hazardous

than what does learn by Eq (1). In other words, when some people go into a

hazardous place, we expect that they get infected with a high probability. Now

if we know they remain healthy, we find out the place was not as hazardous as

we have expected. So, we decrease the hazardous probability of the place and

update it by the following equation.

RP (h) =

k′∏
i=1

θ(µi), (2)

where θ(µi) is the probability function of ith parameter.

Let GP (m) be the probability of an individualm ∈ H∪U being infected at the

place P . In addition to presence in a hazardous place, various parameters such as

hygiene and social distance have an impact on infection. ω(µi) is the probability

function of the ith parameter, and GP (m) is calculated by multiplying ω(µi) for

i = 1, 2, ..., k′′. Note that, if parameter µi is to avoid getting sick (such as

hygiene), we will multiply 1− ω(µi) in the following equation.
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GP (m) =

k
′′∏

i=1

ω(µi). (3)

In this section, we introduced a general model of spreading and infecting

functions. Also, we explained how to formulate the inputs of the proposed

systems. As we mentioned, for adjusting a disease to the model, we need to

define parameters ϕ, θ, and ω. In the next section, we describe the proposed

systems.

4. The Detector and Predictor Systems

The predictor system is applied to determine the infection possibility of an

individual whose moving trajectory is available. This system requires informa-

tion about the hazardous probability of each place in the city. To provide this

information, we first develop the detector system, which learns the hazardous

probability of all the sampled places by using tracking of trajectories of patients

(positive test individuals) and healthy individuals (negative test individuals).

Figure 2 presents a visual representation of the methodology used in this study

The moving paths of people in a city are continuous in both terms of time

and location. We apply a discrete model in both the terms, that is a graph

represents the city and a set of sequential time slots. Indeed, it is difficult to

model a trajectory without losing any information, however, by increasing the

number of nodes in the graph and the number of time slots in a fixed period of

time, we can increase the precision of modeling, however, these also increase the

complexity. Therefore, there is a trade-off between the precision of modeling

and its complexity. Regarding the scale of the city, the number of trajectories

and computational resources, such trade-off can be handled properly. Similarly,

the risk rate of a place varies over time. In fact, there is useful information

on the life-time of viruses on different kinds of material and surfaces, and in

general, the hazardous rate of a place decreases over time if no patient visits

it. To incorporate this fact, we use a layered data structure. Each layer has

information about the current state of the places in the city. Figure 3 illustrates
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Figure 2 The methodology of Detector and Predictor Systems
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mapping a trajectory into the layered data structure. The points in the layers

include not only the time and location of the individual but also the hazardous

rate of the places.

Figure 3 A schematic view of layered data structure

The detector system is developed based on the following observations.

Observation 1. The hazard probability of a place increases when a patient

visits it.

Observation 2. The hazard probability of a place decreases when a healthy

individual visits it and remains healthy.

Let G = (V,E) be the corresponding graph of a city. To detect hazardous

places, first, we construct a layered data structure S such that each layer con-

tains all nodes in V , and each node has a label that is initialized to zero (refers

to the hazard probability of each node at the first time slot). The number of

layers depends on the precision factor as discussed above, and also the proper-

ties of the disease. Next, we update the hazard probability of places by using

the trajectories of the individuals who already their diagnostic test’s result are

available. To this end, we consider the current time as the source of time and

go back to the past step by step at each time slot. We start with the first layer

(the first time slot), and investigate all people’s places and update the hazardous
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rate of the places. Then, we iteratively do this process for all the layers. Note

that, we first handle the patient trajectories and then healthy ones. According

to observation 1, the trajectory of a patient p ∈ P updates the hazardous of a

place l at time slot t by:

St(l) = 1− ((1− St(l))× (1−AP (p))). (4)

Similarly, according to observation 2, each healthy individual h ∈ H updates

the hazardous rate of l by:

St(l) = St(l)× GP (h). (5)

We apply all the trajectories of patients and healthy individuals to construct

St. It includes the hazard probability of each place in the city at time t. The

proposed detector system determines hazardous places at each time slot, so, we

can easily extend it to a day or a long period of time, and we can daily update

the knowledge of the system. We keep the framework of the system simple as

presented. This allows it easily is customized for different infectious diseases

and is applied for large scale graph instances.

To design the predictor system, we propose an HMM. It utilizes the con-

structed layered structure S by the detector system. In general, an HMM allows

studying on both observed events and hidden events that affect probabilistic

phenomena. In our predictor system, the trajectory of a given unknown indi-

vidual is a sequential observation for the HMM. So, the predictor system uses

the places which the individual has visited until the current layer. It calculates

the total possibility of getting the disease by using the hazardous rate of the

places over time. Note that, if δ days need the disease symptoms appear, and

each day includes n time slots, δ × n layers is required to predict the patient

possibility.

An HMM is specified by quintuplet {Q,A,O,B, π}, which Q is the set of

states, A is the transition probability matrix (the probability of moving from

one state to another one), O is the sequence of observations (the input sensing of

the environment), B is the sequence of observation likelihoods (the probability
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Figure 4 Illustration of the proposed HMM.

H P
1 α

1 − α 1

of an observation being generated from a state), and π is the initial probability

distribution over the states (the probability that Markov chain starts in that

state). In the proposed HMM (see Figure 4), we have

• Q = {H, P},

• A =


H P

H 1− α α

P 0 1

,

• O = S1(T(u,1)),S2(T(u,2)), . . . ,Sn(T(u,n)),

• B = 1,

• π =
(H P

1 0
)
,

where u ∈ U , and αt = St(T(u,t))× GP (u) is the patient possibility of u at time

slot t. Consequently, the probability of being health after a day d is

ρd =
n∏

t=1

(1− αt), (6)

and the possibility that u has got the disease up to the current time slot T is:

ρT =

δ∏
d=1

(1− ρd). (7)

Although it is possible to extend the models to consider more parameters

and states, here we tried to keep the models simple with low complexity. Despite

the simplicity of the models, the simulation results confirm both them have high

performance.
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Theorem 1. The detector system works in O(|P ∪ H|.n.δ) time.

Proof. Since the detector system uses all the trajectories of patient and healthy

individuals once, it takes |P ∪ H| computations. On the other hand, each tra-

jectory contains n time slots, so, n.|P ∪ H| computations are needed. Finally,

since δ days should be considered by the systems, the total time complexity is

O(n.δ.|P ∪ H|).

Theorem 2. The predictor system works in O(n.δ) time, for each given indi-

vidual’s trajectory.

Proof. The predictor system uses the trajectory of an individual at each time

slot for all the required days, so the total cost is O(n.δ) time.

Although various advanced HMMs and deep-learning approaches can adapt

to the current problem’s setting, in this paper, a general HMM is used due to

keeping the model simple and integrated with the detecting system. In detail,

there are multiple reasons that HMM is preferred to other learning approaches,

particularly the deep-learning approaches, in this research:

• HMMs are simple to implement, manipulate and customize. Also, they

need less computational resources comparing the other learning-based

methods,

• The population (and the case study in this research) is not so big and is not

so complicated related features to use the other learning and deep learning

approaches such as LSTM and RNN. We considered a closed population

with a negligible rate of immigration,

• HMMs make the Markovian assumption, that is, we assume the current

state depends only on the previous state. So, when our data satisfy this as-

sumption roughly, HMMs might be the preferred method, however, other

learning-based approaches might find spurious patterns, and hence over-

fit,
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• With HMMs, the inputs and the outputs have a one-to-one correspon-

dence,

• HMMs are generative models, while deep-learning approaches are primar-

ily discriminative models.

It is worth mentioning that the deep-learning approaches such as RNNs and

LSTM networks as well as other advanced variations of HMMs have their inter-

ests and advantages for analyzing the sequential data, and we believe that some

of the current work limitations can be solved using these methods as well using

a different modeling and training features.

4.1. Adjusting Covid-19 to the Proposed Systems

The current Covid-19 pandemic has become the greatest concern of the

world. The World Health Organization (WHO) reported 95.85 million peo-

ple around the world have been infected, and unfortunately more than two mil-

lion people have passed away due to Covid-19 (https://www.worldometers.info/

coronavirus/). Therefore, it is the most major pandemic disease in the world,

so we adjust the proposed systems to the known properties of this disease and

available information in the scientific reports in this concern. We initialize ef-

fective parameters on the transmission of Covid-19. Although there are several

transmission ways for Covid-19. We adjust all of the impression factors in

batches, e.g., using masks and sanitary gloves, methanol for disinfection can be

considered as a hygiene parameter in the model.

AP (p) = (1− σ)× βd, (8)

where σ is the percent of personal hygiene and β is being patient ratio, so βd is

the possibility of being patient in d-th day. Note that, it is assumed the starting

day of being patient is unrecognizable. Also, each healthy individual effects the

current place hazard rate by:

RP (p) = 1 + ln(σ)/C, (9)
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GP (m) = (1− σ)× γ × o, (10)

where γ is the social distance impact probability, and o is some (probably)

missed effective parameters in Covid-19 infection . In the next section, we will

verify the accuracy and performance of the proposed approach on Covid-19

initialization.

5. Simulation Results

To validate and analyze the presented detector and predictor systems’ per-

formance, we implemented them and conducted a set of experiments on Covid-

19. The source codes are available at https:/github.com/mohsen-ghaffari1992/

DETECTOR and PREDICTOR SYSTEMS. Since Covid-19 is a currently emerged

disease, unfortunately, there is no complete real data set that contains all the

parameters introduced in this study. So, we used real data as much as possi-

ble and generated the missed data by applying real-world’s features to be more

reliable. We will explain the way of providing data and all the initialization of

the parameters in the following.

As aforementioned, the input of the detector system is a graph of a specific

city and the trajectories of people who live in the city. We studied Sareyn city

(Figure 1a), a small city in the north-west of Iran which we have its graph and

high-risk and infected places as well as most parameters of the models based

on the local experts’ reports. This city contains about 2500 buildings, markets

and stores, gas stations, bus and taxi stations (during the studies the schools,

restaurants, gyms, hairdresser and fashion stores were closed), and about 7000

population which 183 of them allow us to access their movements’ trajectory

partially. We assumed each floor of a building as an independent node in the

graph, and the node that corresponds to the ground floor connects other nodes

of the building to outer nodes. First, we construct the corresponding graph of

the city (includes 5000 nodes) and label each node with a random value that

shows the number of people who could be there at the moment. Then, we make
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trajectories by using random walking on the weighted graph. We control random

walking in the city by using gathered information for the group of volunteers,

such a way that each person is at home from 00:00 until 07:00, then he/she

go out for a while (that is random between 7 to 14 hours) and go back home.

Also, each time slot in this simulation is 10 minutes, and people do not have

a connection along the path. Without loss of generality, we suppose that the

latent period of Covid-19 is two days (δ = 2), and β = 0.8 (see Eq. (8)).

To validate the detector system, we utilize experts’ reports to determine the

hazardous rate of each place. Then, we run the predictor system for a group of

people and obtain the possibility of being infected for each person. Next, we put

them into two categories; the healthy (the individuals whose patient possibility

is less than 50%) and the patients (the individuals whose patient possibility is

equal or more than 50%). In this part, we use a set of volunteer individuals’

data (without knowing their ID) and a set of random trajectories. Finally, we

consider the trajectories of these people as the input of the detector system. In

this case, we expect that the system is able to find the hazard places determined

by the expert.

Figure 5 Schematic illustration of comparison between defined information by

the expert (a), and the detector system’s results (b).

(a) (b)

Figure 5 displays the results of the first round of the simulations. Also, the

details of the results are presented in Table A.6 in the Appendix. As it can

be seen in Figure 5, the proposed detector system can find the infected places

with high probability, however, there are still some places that are not detected
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by the system. This happens because the population did not visit those places

sufficiently to learn. So, if the required data was available in the real world,

the proposed system could detect the hazardous rate of the places. Note that,

the illustrated nodes in Figure 5 are ordered based on their index, and their

corresponding places in the city are not neighbors necessarily.

Now, we study the information provided by the layered structure in analyzing

people treatment. Figure 6 and Figure 7 illustrate layers corresponds with

four 30-minutes intervals and four daily intervals, respectively. Comparing the

obtained results with the information presented by the experts, it is confirmed

that the detector system works well most of the time. So that, it detects 72% of

hazardous places, and for 28% of places which it cannot detect, the average of

the hazard ratio is 61%. On the other hand, it makes a mistake for 1% places and

detects safe places as hazardous places. This error happens due to a lack of real

data, and one way to overwhelm this issue is that more individuals participate

in gathering data particularly the infected individuals. Also, as expected, we

observed the hazard ratio of the places changes smoothly in a day.

In general, each person has almost stable and iterative movement trajectories

in a period of time. So, we expect that the hazardous ratio does not change

suddenly in a period like a few consecutive days. Figure 7 shows a significant

difference in the hazardous ratio of a specific place on different days. The

main reason for this is the lack of real-world data, however, by incorporating

the experts’ knowledge in initializing rates of the places this problem can be

smoothed. The initializing period problem corresponds to the first day of input

trajectories. So, the detector system assumes almost no foreknowledge of the

hazardous rates. Particularly, this happens in the first time intervals, and after

passing some time intervals what is learned by the detector system closes to the

true information.

To validate the predictor system, we choose individuals with the known

diagnostic test result and compare the output of the system with them. We

assume C = 1 in Eq. (9) in the simulations. According to the results, the

predictor system is 96% successful in predicting the disease. However, the test
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also yields a false-positive result for 1% of healthy people. For a prevalence

rate of 10%, the probability of an individual has truly the disease given his/her

predictor test result is positive is computed by the following:

ρ(p|T+) =
ρ(p ∩ T+)

ρ(T+)

=
ρ(T+|p)ρ(p)

ρ(T+|p)ρ(p) + ρ(T+|h)ρ(h)

=
(0.96)(0.1)

(0.96)(0.1) + (0.01)(0.9)

≃ 91.4%

(11)

Next, we investigate the sensitivity analyzes of them. We considered all

the parameters in three batches. Table 2 illustrates the impact of hygiene on

hazardous places and the possibility of being infected with Covid-19. According

to these results, if all the people of a city respect personal hygiene more than

80%, all places will be safe with high probability. Accordingly, personal hygiene

can resist the propagation of infectious diseases.

Table 2 Impact of the hygiene parameter on the environment when the tests

are applied on the people who do not diagnostic tests

Hygiene

percent

The number

of patients

The number

of healthy

individuals

The number

of places

with at least

60%

hazardous

The number

of places

with at least

80%

hazardous

The number

of places

with at least

90%

hazardous

0-10 843 157 523 389 303

10-20 712 288 433 312 267

20-30 691 309 361 193 178

30-40 689 311 229 54 34

40-50 666 334 197 54 25

50-60 592 408 112 38 21

60-70 508 492 87 6 9

70-80 148 852 52 3 1

80-90 0 1000 36 3 0

90-100 0 1000 14 2 0

The importance of social distance is less than the personal hygiene parame-

ter, but it is an important parameter to decrease the possibility of the Covid-19

outbreak. The impact of social distance studies in Table 3, which illustrates

disregarding that may increase the possibility of being infected. According to
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the results, decreasing the social distance would be enough reason for highly

spreading infectious disease.

Table 3 Impact of the social distance parameter on the environment

Social

distance

impact ratio

The number

of patients

The number

of healthy

individuals

The number

of places

with at least

60%

hazardous

The number

of places

with at least

80%

hazardous

The number

of places

with at least

90%

hazardous

0.05 486 514 351 212 134

0.1 598 402 351 212 134

0.2 705 295 351 212 134

In addition to personal hygiene and social distance, other influential pa-

rameters such as touching a surface (Santarpia et al., 2020) and temperature

(Riddell et al., 2020) affect on spreading Covid-19. Unfortunately, there is no

precise and reliable information in this regard for Covid-19. For this reason,

we consider a batch of such parameters includes parameters whose impacts are

unknown. The results are presented in Table 4. In comparison with Table 3,

it is clarified that sometimes such unknown parameters are influential than the

social distance parameter because it contains a batch of effective transmission

parameters.

Table 4 Impact of other effective parameters on the environment

Impact ratio The number

of patients

The number

of healthy

individuals

The number

of places

with at least

60%

hazardous

The number

of places

with at least

80%

hazardous

The number

of places

with at least

90%

hazardous

0.05 503 497 351 212 134

0.1 607 393 351 212 134

0.2 675 325 351 212 134

Since we are not sure about our knowledge of the Covid-19 transmission

functions, we have to investigate the accuracy of it for different accuracy rate of

healthy individuals, C. It would get different values for different environments

and determining an exact value is difficult. On the other hand, C may change

over time. We study it in Table 5. The value of C=1 is the best one for the

environment in our case study. Note that, lack of exact information about the

infectious disease can lead the proposed systems to weak results.
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Table 5 Impact of accuracy rate of the healthy individuals, C

C Patient detecting Healthy detecting

1 96% 91.6%

2 96% 91%

3 96% 89%

4 95% 83%

5 95% 82%

6 94% 81.8%

7 93% 81.2%

8 93% 81%

9 92% 80%

10 91% 79.2%

6. Conclusion

The importance of infectious diseases and pandemics in all aspect of human

life is clear for all. The Coronavirus disease (COVID-19) is a nowadays example

of such pandemics. Finding an approach to decrease such disease exposure, and

help to efficiently manage them, is tangible. In this paper, we developed simple

and efficient systems to detect the hazardous places of the contagious disease

in a city and predict the patient possibility of individuals. Our approach is

based on the hidden Markov model and learns and works by applying movement

trajectories of patients and healthy individuals around an environment. The

proposed approaches are generalized frameworks and can be simply applied

to any infectious disease by adjusting corresponding parameters. We applied

the Covid-19 setting and verified the approach using a small city’s individuals

regarding the available information. The results showed that the error rate for

predicting the patient possibility in the predictor system is highly acceptable in

comparison to the diagnostic test. The results also illustrate that the detector

system can detect the hazardous rate of each place. That is useful for giving a

warning about the risks of places to care more.

Excessive dependence on data is the major problem of this research, which

lack of data can decrease the accuracy of the systems. This issue will be more

tangible when some people do not allow us to gather their daily trajectories. Be-

sides, the influential factors and their impact are not available at first. For this

reason, both systems can result in unreliable answers. To overcome these prob-
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lems, finding an approach that works based on the gathered data i.e. satellite

images seems helpful.

In general, we believe the results of this study can be used to establish on

time and proper rules and protocols for efficiently managing and controlling

disease spreading. We avoid designing complex systems with many parameters

and keep the model and the detector and predictor systems simple as much as

possible. We showed that the history of individuals’ locations can considerably

help in detecting infected places and individuals. Testing and verifying the

proposed systems by applying them to more case studies with available disease

parameters is an extension of this study. Also, using much more complex and

deep learning approaches such as long short-term memory can be mentioned as

another extension.
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Appendix A. Validating the detector system

Table A.6: Comparison between a complete layer of S and corresponding layer information

defined by expert.

Expert Detector Expert Detector Expert Detector Expert Detector Expert Detector

0.0 0.0 0.6 0.69 0.0 0.0 0.0 0.0 0.0 0.0

0.43 0.93 0.77 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.47 0.09

0.73 0.73 0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.46

0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.96 1.0 0.98

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.76 0.76 0.0 0.0 0.41 0.98 0.75 0.94

0.67 0.79 0.0 0.0 0.84 0.0 0.0 0.0 0.99 0.78

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.48 0.62

0.68 0.68 0.29 0.29 0.0 0.0 0.0 0.0 0.0 0.0

0.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.72 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.41 0.32 0.39

0.0 0.0 0.58 0.0 0.0 0.0 0.96 0.99 0.94 0.8

0.77 0.0 0.96 0.96 0.7 0.97 0.0 0.0 0.81 0.0

0.77 0.69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0

0.42 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.59 0.0

0.0 0.0 0.75 0.94 0.0 0.0 0.0 0.0 0.0 0.0

0.83 0.0 0.0 0.0 0.0 0.0 0.72 0.0 0.45 0.84

0.83 0.97 0.0 0.0 0.0 0.0 0.83 0.97 0.98 0.98

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.46 0.15 0.0 0.0 0.56 0.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.65 0.0 0.43 0.38 0.73 0.93

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.76 0.0 0.0 0.0 0.0 0.0 0.51 0.62 0.0 0.0

0.77 0.0 0.0 0.0 0.83 0.83 0.85 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.79 0.79 0.8 0.0 0.7 0.0

0.39 0.0 0.0 0.0 0.0 0.0 0.73 0.73 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7

0.0 0.0 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0

0.78 0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.77 0.81 0.93 0.93 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.96 0.97 0.0 0.0 0.86 0.86

0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.9 0.75 0.85

0.84 0.84 0.0 0.0 0.0 0.0 0.0 0.0 0.85 0.85

0.76 0.76 0.0 0.0 0.7 0.91 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.66 0.79 0.5 0.5 0.59 0.68

0.71 0.71 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

0.72 0.62 0.22 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.4 0.13 0.79 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.78 0.99 0.0 0.0 0.94 0.0 0.87 0.0 0.87 0.87

0.48 0.38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.81 0.81 0.48 0.48 0.75 0.69 0.41 0.41 0.0 0.0

0.99 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.86 0.0 0.0 0.0 0.61 0.63
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Table A.6 – continued from previous page

Expert Detector Expert Detector Expert Detector Expert Detector Expert Detector

0.52 0.14 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.57 0.43 0.0 0.0 0.8 0.0 0.61 0.92 0.88 0.88

0.82 0.97 0.0 0.0 0.75 0.0 1.0 0.99 0.0 0.0

0.9 0.9 0.75 0.75 0.81 0.81 0.0 0.0 0.0 0.0

0.71 0.71 0.89 1.0 0.0 0.0 0.9 0.99 0.0 0.0

0.0 0.0 0.0 0.0 0.42 0.54 0.62 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.0 0.77 0.77

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.87 0.0 0.0 0.0 0.0 0.0

0.52 0.0 0.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.73 0.73 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.58 0.42 0.85 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.95 0.0 0.0

0.0 0.0 0.0 0.0 0.89 0.99 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.88 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.79 0.96 0.0 0.0 0.0 0.0

0.77 0.0 0.7 0.91 0.87 0.0 0.0 0.0 0.0 0.0

0.98 1.0 0.96 0.81 0.0 0.0 0.0 0.0 0.81 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.74 0.74

0.83 0.83 0.0 0.0 0.82 0.82 0.0 0.0 0.38 0.98

0.0 0.0 0.0 0.0 0.42 0.2 0.0 0.0 0.95 0.94

0.77 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.72 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.88 0.88 0.0 0.0 0.0 0.0 0.95 0.82

0.72 0.64 0.96 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.7 0.72 0.73 0.73 0.0 0.0 0.8 0.0 0.71 0.83

0.73 0.0 0.0 0.0 0.77 0.77 0.89 0.0 0.97 1.0

0.0 0.0 0.75 0.0 0.0 0.0 0.39 0.0 0.0 0.0

0.51 0.99 0.0 0.0 0.85 0.85 0.0 0.0 0.0 0.0

0.0 0.0 0.66 0.47 0.0 0.0 0.95 0.99 0.68 0.94

0.0 0.0 0.84 0.84 0.66 0.0 0.54 0.7 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.82 0.82 0.0 0.0

0.74 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.81 0.64 0.0 0.0 0.0 0.0 0.97 0.85 0.0 0.0

0.89 0.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.82 0.82 0.81 0.0 0.75 0.94

0.0 0.0 0.8 0.8 0.0 0.0 0.66 0.67 0.0 0.0

0.0 0.0 0.0 0.0 0.36 0.22 0.81 0.96 0.78 0.0

0.73 0.0 0.0 0.0 0.0 0.0 0.31 0.24 0.0 0.0

0.0 0.0 0.33 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.74 0.0 0.88 0.99 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.82 0.82 0.0 0.0

0.0 0.0 0.52 0.53 0.45 0.0 0.0 0.0 0.98 0.0

0.0 0.0 0.0 0.0 0.7 0.7 0.72 0.72 0.0 0.0

0.99 1.0 0.84 0.97 0.97 1.0 0.72 0.72 0.64 0.64

0.98 1.0 0.46 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.79 0.0 0.73 0.84 0.0 0.0 0.0 0.0 0.0 0.0

0.98 0.0 0.49 0.0 0.0 0.0 0.56 0.29 0.64 0.64

0.0 0.0 0.0 0.0 0.7 0.7 0.0 0.0 0.73 0.0

0.0 0.0 0.0 0.0 0.51 0.0 0.0 0.0 0.0 0.0

0.99 1.0 0.0 0.0 0.9 0.9 0.0 0.0 0.68 0.83

Continued on next page

35



Table A.6 – continued from previous page

Expert Detector Expert Detector Expert Detector Expert Detector Expert Detector

0.0 0.0 0.0 0.0 0.43 0.43 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.79 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.43 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.97 0.97

0.0 0.0 0.0 0.0 0.0 0.0 0.86 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.82 0.82

0.83 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.42 0.0

0.87 0.87 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.71 0.71 0.0 0.0 0.0 0.0

0.69 0.0 0.21 0.16 0.0 0.0 0.85 0.0 0.0 0.0

0.0 0.0 0.74 0.0 0.0 0.0 0.89 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.73 0.58 0.0 0.0

0.0 0.0 0.76 0.94 0.97 0.97 0.96 0.99 0.74 0.0

0.0 0.0 0.56 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.84 0.84 1.0 1.0 0.75 0.94 0.55 0.55

0.63 0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.37 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 0.0 0.7 0.91 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.64 0.87 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.78 0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.93 0.71 0.0 0.0 0.59 0.0

0.8 0.0 0.0 0.0 0.51 0.42 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.99 0.45 0.5

0.0 0.0 0.42 0.6 0.0 0.0 0.54 0.0 0.0 0.0

0.0 0.0 0.88 0.88 0.97 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.99 0.99 0.0 0.0 0.0 0.0 0.75 0.94

0.49 0.0 0.78 0.78 0.0 0.0 0.0 0.0 0.0 0.0

0.81 0.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9 0.9 0.0 0.0 0.57 0.57 0.62 0.83 0.82 0.97

0.0 0.0 0.0 0.0 0.62 0.75 0.6 0.0 0.72 0.99

0.0 0.0 0.0 0.0 0.78 0.95 0.0 0.0 0.0 0.0

0.31 0.27 0.77 0.0 0.44 0.65 0.19 0.0 0.0 0.0

0.99 0.99 0.0 0.0 0.0 0.0 0.49 0.49 0.0 0.0

0.0 0.0 0.87 0.98 0.0 0.0 0.0 0.0 0.0 0.0

0.78 0.0 0.72 0.72 0.82 0.0 0.0 0.0 0.88 0.88

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.81 0.0 0.87 0.0 0.81 0.96 1.0 1.0 0.47 0.61

0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.79 0.73 0.85

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.74 0.0 0.0 0.0

0.69 0.8 0.0 0.0 0.74 0.74 0.81 0.81 0.0 0.0

0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.56 0.0

0.0 0.0 0.73 0.93 0.0 0.0 0.0 0.0 0.72 0.72

0.85 0.85 0.4 0.86 0.0 0.0 0.0 0.0 0.35 0.3

0.0 0.0 0.0 0.0 0.0 0.0 0.84 0.97 0.3 0.17

1.0 1.0 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0

0.62 0.73 0.56 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.95 0.97 0.8 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.51 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.2 0.74 0.74 0.0 0.0 0.89 0.99 0.0 0.0

0.46 0.33 0.0 0.0 0.87 0.98 0.0 0.0 0.39 0.0

Continued on next page
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Table A.6 – continued from previous page

Expert Detector Expert Detector Expert Detector Expert Detector Expert Detector

0.94 0.0 0.69 0.69 0.0 0.0 0.0 0.0 0.82 0.0

0.53 0.26 0.0 0.0 0.0 0.0 0.0 0.0 0.86 0.86

0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0

0.72 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.84 0.84 0.89 0.99 0.77 0.9

0.81 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.57 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.77 0.77 0.0 0.0 0.51 0.64

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.98 0.85 0.0 0.0 0.82 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.85 0.5 0.74 0.74 0.0 0.0 0.0 0.0

0.0 0.0 0.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.52 0.0 0.0 0.0 0.92 0.73 0.0 0.0 0.7 0.97

0.0 0.0 0.74 0.74 0.0 0.0 0.83 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.87 0.98 0.0 0.0 0.88 0.99

0.39 0.65 0.53 0.67 0.0 0.0 0.36 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.59 0.59

0.0 0.0 0.73 1.0 0.0 0.0 0.94 0.95 0.0 0.0

0.94 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.79 0.77 0.78 0.95

0.0 0.0 0.89 0.0 0.0 0.0 0.73 0.73 0.72 0.0

0.0 0.0 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.99 1.0 0.86 0.95 0.0 0.0 0.7 0.7 0.0 0.0

0.89 0.0 0.0 0.0 0.99 1.0 0.84 1.0 0.0 0.0

0.4 0.62 0.38 0.0 0.0 0.0 0.74 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.78 0.62 0.0 0.0 0.46 0.0

0.0 0.0 0.0 0.0 0.82 0.0 0.0 0.0 0.55 0.0

0.98 0.82 0.0 0.0 0.0 0.0 0.45 0.8 0.0 0.0

0.0 0.0 0.49 0.0 0.43 0.42 0.75 0.75 0.0 0.0

0.79 0.79 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.73 0.93 0.0 0.0 0.85 0.0 0.0 0.0 0.37 0.46

0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.71 0.0 0.0 0.0 0.98 1.0 0.0 0.0 0.46 0.0

0.89 0.0 0.0 0.0 0.0 0.0 0.85 0.85 0.78 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.39 0.49 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.73 0.73

0.66 0.95 0.0 0.0 0.71 0.0 0.95 0.99 0.0 0.0

0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.36 0.22

0.6 0.9 0.0 0.0 0.0 0.0 0.86 0.0 0.0 0.0
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Figure 6 Comparison between the defined information by the expert (6a) and

the detector system’s results (6b) from 10:00 until 12:00 on a day.

(a)

(b)
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Figure 7 Comparison between the provided information by expert (7a) and the

detector system’s results (7b) for four consecutive days at 10:00.

(a)

(b)
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