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Local Window Attention Transformer for
Polarimetric SAR Image Classification

Ali Jamali, Swalpa Kumar Roy, Student Member, IEEE,
Avik Bhattacharya, Senior Member, IEEE, and Pedram Ghamisi, Senior Member, IEEE

Abstract—Convolutional neural networks (CNNs) have re-
cently found great attention in image classification since deep
CNNs have exhibited excellent performance in computer vi-
sion. Owing to their immense success, of late, scientists are
exploring the functionality of transformers in Earth observation
applications. Nevertheless, the primary issue with transformers
is that they demand significantly more training data than
CNN classifiers. Thus, the use of these transformers in remote
sensing is considered challenging, notably in utilizing polari-
metric SAR (PolSAR) data, due to the insufficient number of
existing labeled data. In this letter, we develop and propose a
vision transformer-based framework that utilizes 3D and 2D
CNNs as feature extractors and, in addition, local window
attention for the effective classification of PolSAR data. Ex-
tensive experimental results demonstrated that the developed
model PolSARFormer obtained better classification accuracy
than the state-of-the-art vision Swin Transformer and FNet
algorithms. The PolSARFormer outperformed the Swin Trans-
former and FNet by 7.79% and 6.94%, respectively, in terms
of average accuracy in the San Francisco data benchmark.
Moreover, the results over the Flevoland dataset illustrated that
the PolSARFormer exceeds several other algorithms, including
Swin Transformer (95.31%), AlexNet (97.93%), a 2D CNN
(98.58%), FNet (98.63%), and ResNet (98.82%), with a kappa
index of 98.93%. The code will be made available publicly at
https://github.com/aj1365/PolSARFormer

Index Terms—visual transformers, PolSAR image classifica-
tion, convolutional neural networks (CNN), attention mechanism,
local window attention (LWA).

I. INTRODUCTION

SYnthetic aperture radar (SAR) as an active microwave
imaging system perceives terrain without being con-

strained by illumination or the atmosphere [1]. Thus, it is
extensively used within civil and military applications [2]–
[5]. With the rapid growth of data, reliably characterizing
SAR images has become an immediate demand [6]. The
burst of deep learning algorithms has recently opened up
a new opportunity for PolSAR classification tasks [2], [7],
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[8]. Nevertheless, the effectiveness of these methods depends
on the availability of substantial quantities of class labels
(i.e., reference data). It is well recognized that referencing
PolSAR data is time-consuming and labor-intensive and re-
quires domain-specific skills and knowledge, causing PolSAR
annotations to be considerably challenging to acquire. Due to
the lack of the desired quantity of labelled data and difficulties
encountered by experts in PolSAR reference data creation and
labelling, most research focus on the utilization of shallower
CNNs (i.e., CNN models with less than five layers) [8].

On the other hand, given the considerable success of
transformer models in language processing, scientists are now
investigating the capabilities of these cutting-edge models in
computer vision and Earth observation [9]–[11]. One should
note that they have lately shown to be effective in a wide
range of applications, including remote sensing imagery char-
acterization [11]. Nevertheless, the main concern with trans-
formers is that they demand more training data than CNNs.
Consequently, using such transformers in remote sensing is
regarded as challenging, particularly in PolSAR applications
with a limited number of labeled data. As such, we de-
velop and propose an efficient vision transformer that utilizes
neighborhood attention to precisely classify PolSAR imagery.
The objective is to develop a vision transformer capable of
accurately classifying PolSAR data. The contributions of this
paper can be explained as follows:

• We developed a deep learning based image classification
framework that can effectively combine CNNs and vision
transformers to classify PolSAR imagery accurately.

• The proposed model utilizes local window attention
(LWA) instead of self-attention, which is computationally
too expensive for improving the feature generalization
capability in a local region by significantly decreasing
the computation cost of vanilla ViTs.

• The integration of 3D and 2D CNNs with local window
attention (LWA) resulted in much lower classification
noises than the state-of-the-art vision transformers, i.e.,
Swin Transformer.

II. PROPOSED CLASSIFICATION FRAMEWORK

Convolutional neural network (CNN) has already been
proven to be a high-level feature extractor and has been
successfully applied in many computer vision tasks. In this
section, we introduce PolSarFormer, an effective, reliable, and
scalable hierarchical vision transformer (ViT)-based encoder
network for PolSAR imagery classification. An adaptable

https://github.com/aj1365/PolSARFormer
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Fig. 1: Graphical representation of the proposed PolSARFormer network for Polarimetric SAR Image Classification where (a) 3D-2D CNN as feature extractor, (b) local window
attention transformer (LWAT) and (c) visualization of multihead local window attention, respectively.

and simple attention mechanism called local attention trans-
former (LAT) is explored for the effective utilization of ex-
tracted features in classification. Hence, the proposed network
comprises two crucial parts, i.e., feature extractor and self
attention mechanism. Fig. 1 shows the proposed framework
for PolSAR image classification.

Feature Extractor: A PolSAR imagery can be represented
as X ∈ RW×H×D, which contains two spatial dimensions,
i.e., the width W and the height H , and a polarimetric dimen-
sion D. All the pixels under the region of interest are classified
into c land-cover classes denoted by Y = (y1, y2, . . . yc). The
class-wise land-cover regions of size 12×12 are sampled from
the PolSAR data Xorig to create the training and validation
data. To utilize the capabilities of CNNs as feature extractors,
we employed a 3D and 2D CNN hierarchical architecture as
the backbone network [12]. The aim is to utilize the ability
of Conv3D to extract both the polarimetric-spatial features.
In contrast, Conv2D helps to refine the prominent spatial
feature among the backscattering and polarimetric data so
that the backbone feature extractor is not too computationally
intensive. The feature extractor has three 3D convolutional
layers with the number of kernels 16, 32, and 64 with the
size of 12 × 12 × 12 followed by a 2D CNN convolutional
layer with 12 kernels with the size of 12 × 12. To create
long range dependencies among the extracted feature maps,
a simple attention mechanism, local window attention (LWA),
is utilized to effectively localize each query’s receptive field
to its closest neighboring pixels within a local window.

Local window attention: It is considered as a localized
self-attention that involves inductive biases similar to convolu-
tion like operations, removing the requirement for additional
overhead like pixel shifts explored in the advanced models
of ViT such as Swin Transformer [13]. The LWA limits the
receptive field of each query token to fixed-sized neighboring
pixels. The motivation behind the LWA is to create the local
neighborhood window; the smaller neighboring region receives
greater local attention, whereas the larger neighboring region
receives greater global attention. Thus, the LWA mechanism
better controls the receptive fields while balancing translational
invariance and equivariance properties compared to other

vision transformers.
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Fig. 2: local window attention module

The neighborhood of a pixel at a spatial position (i, j)
in a lth feature map, i.e., (i, j, l) within a local window, is
expressed by τ(i, j, l), which contains a finite set of indices
belonging to pixels close to the location (i, j) of lth feature
map. For a local window of size S × S, a neighborhood
of τ(i, j, l) is calculated as ||τ(i, j, l)|| = S2. The LWA on
a single pixel at location (i, j) in the lth feature map can
be expressed in terms of linear projections of the extracted
features X . The queries q of size (1 × D) whereas keys k
and values v, both work on the entire patch matrix of size
(N ×D):

q = WqX, k = WkX, v = WvX

The pairwise dot product applied between queries (q) and
keys (k) inside a softmax function to calculate the attention
map (A) as shown in Fig. 2.

A = softmax
(
q(i,j,l)k

T
τ(i,j,l) + b(i,j,l)/

√
D
)

where the relative positional bias is denoted by b(i,j,l), which
is added to each attention map depending upon its relative
position. 1/

√
D represents the scale and helps to resist the

small gradient propagation of the softmax function. LWA is
then computed as:

LWA(X) = Avτ(i,j,l) (1)

One should note that self-attention enables each token to
interact with all the other tokens, whereas LWA restricts each
token’s receptive field to an area surrounding itself. As a result,
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the LWA has added the benefit of directly limiting each pixel to
its neighboring area at no additional computational expenses,
eliminating the need for pixel transitions to incorporate cross-
window interrelations. Moreover, unlike window attention,
the LWA is not constrained to operate on inputs by the
window size. It should be noted that if the size of the pixel’s
neighborhood is greater than or equal to the size of the feature
map, self-attention and neighborhood attention will produce a
similar result to that of the input map.

PolSARFormer: The backscattering and polarimetric fea-
tures in the developed model will be passed to the feature
extractor as described above. The PolSAR data input size
will remain unchanged through the feature extractor part.
Afterward, the resulting output of the feature extractor will
be passed to the LWA. The LWA embeds the output of the
feature extractor with two successive 3× 3 convolution layers
using strides of 2 × 2, yielding a spatial size one-fourth
of the PolSAR data input. The LWA employs overlapping
convolutions rather than non-overlapping ones. The developed
model consists of two levels, wherein the first level has three
LWA blocks, while we used four blocks in the second level. It
should be noted that there can be several levels consisting of
different/similar numbers of blocks of LWA, identical to that
of Swin Transformer [13]. It is worth noting that the results
of each level will be passed to the next existing level.

TABLE I: Classification results of Flevoland dataset in terms of F-1 score where κ =
Kappa index, OA = Overall Accuracy, AA = Average Accuracy, ST = Swin Transformer,
and PolSF= PolSARFormer, respectively.

Class ST AlexNet FNet 2DCNN ResNet PolSF
Rapeseed 0.96 0.98 0.99 0.98 0.99 0.99

Beet 0.96 0.99 0.99 0.99 0.99 1
Stembeans 0.99 1 0.99 1 0.99 0.99

Peas 0.99 1 0.99 1 1 1
Forest 0.92 0.98 0.98 0.97 0.98 0.99

Lucerne 0.98 0.99 0.99 0.99 1 0.99
Wheat 0.96 0.97 0.99 0.99 0.99 0.98
Barley 0.98 1 0.99 1 1 1

Potatoes 0.92 0.97 0.98 0.97 0.98 0.99
Bare Soils 0.91 0.99 0.98 1 0.99 1

Wheat3 0.97 0.98 0.99 0.99 0.99 0.99
Water 0.98 1 1 1 1 1
Grass 0.88 0.93 0.97 0.97 0.98 0.98

Building 0.94 0.99 0.92 0.99 0.95 0.96
Wheat2 0.97 0.97 0.99 0.99 0.99 0.97

OA×100 95.70 98.1 98.75 98.69 98.92 99.02
AA×100 96.28 97.96 97.77 98.84 98.53 98.78
κ×100 95.31 97.93 98.63 98.58 98.82 98.93

III. EXPERIMENTAL RESULTS

A. Experimental Data

NASA/JPL AIRSAR recorded the data of Flevoland, situ-
ated in the Netherlands, on August 16, 1989. The Flevoland
image is 750×1024 pixels in size. The other dataset illustrates
a NASA/JPL AIRSAR L-band image of the San Francisco
area. The resolution of the data of the San Francisco is
900 × 1024 pixels. It is worth remembering that from both
PolSAR benchmarks, we have extracted 12×12 image patches.
In San Francisco, we have used 5% of the data for model
training and the remaining 95% as test data. In contrast, in
the Flevonad, due to the availability of less labeled data, only

10% of the labeled data is used for training, whereas 90% of
the data is used to perform test experiments.

TABLE II: Classification results of San Francisco dataset in terms of F-1 score where κ =
Kappa index, OA = Overall Accuracy, AA = Average Accuracy, ST = Swin Transformer,
and PolSF=PolSARFormer, respectively.

Class ST AlexNet FNet 2DCNN ResNet PolSF
Bare Soil 0.84 0.82 0.88 0.88 0.83 0.85
Building 0.96 0.97 0.96 0.97 0.96 0.98

Water 0.99 0.99 0.99 0.99 0.99 0.99
Vegetation 0.68 0.77 0.68 0.8 0.71 0.86
Mountain 0.95 0.94 0.94 0.95 0.92 0.97
OA×100 95.67 96.11 95.71 96.72 95.18 97.39
AA×100 86.83 87.77 87.68 90.99 86.89 94.62
κ×100 93.12 93.89 93.19 94.85 92.41 95.93

B. Classification Results

The developed model, PolSARFormer, is compared with
several other models, including a state-of-the-art visual Swin
Transformer [13], an advanced multi-layer perceptron, i.e.,
FNet, which was developed by Google that uses Fourier Trans-
forms [14], AlexNet [15], a 2D CNN [7], and ResNet [16]
for the classification of PolSAR imagery in two widely used
datasets, i.e., Flevoland and San Francisco, respectively. The
evaluated results over the Flevoland dataset are shown in
Table I. The reported results show that the PolSARFormer
model exceeds the other algorithms, including that of the Swin
Transformer (95.31%), AlexNet (97.93%), 2D CNN (98.58%),
FNet (98.63%), and ResNet (98.82%), and achieves the kappa
index of 98.93%. In the Flevoland region, the proposed model
outperforms the cutting-edge Swin Transformer in terms of
overall accuracy (OA) by 3.62%. Fig. 3 shows the class-wise
land-cover classification map using various methods for the
Flevoland region. As seen in Figs. 5(a)-(b), the PolSARFormer
network produces a better homogeneous land cover map
with less noise when compared with the other visual Swin
Transformer.

Table II shows the classification results, whereas Fig4
depicts the visual classification maps for the San Francisco
region dataset. It has been observed from the results in
Table II that the proposed PolSARFormer model achieves an
average accuracy (AA) of 94.62%, illustrating better clas-
sification results as compared to the 2D CNN (90.99%),
AlexNet (87.77%), FNet (87.68%), ResNet (86.89%), and
Swin Transformer (86.83%). The Swin Transformer and FNet
algorithms are considered state-of-the-art vision transformers.
Still, both methods illustrated a lower level of classification
accuracy due to their need for a much higher number of
training data than the CNN classifiers. However, the proposed
PolSARFormer classifier demonstrated much better PolSAR
imagery classification accuracy when compared with the state-
of-the-art vision Swin Transformer and FNet. In more detail,
the PolSARFormer outperforms the Swin Transformer and
FNet by the margin of 7.79% and 6.94%, respectively, in terms
of average accuracy.

C. Ablation study

To better understand the significance of each part of the
developed PolSARFormer, we have drawn an ablation study.
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Fig. 3: Classification Maps over the Flevoland dataset using a) 2D CNN, b) AlexNet,c) FNet, d) ResNet e) Swin Transformer, and f) the PolSARFormer.
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Fig. 4: Classification maps over the San Francisco dataset using a) 2D CNN, b) AlexNet, c) FNet, d) ResNet e) Swin Transformer, and f) the PolSARFormer.

(a) Swin Transformer (b) PolSARFormer (c) Swin Transformer (d) PolSARFormer

Fig. 5: A comparison of noises by the vision transformers of Swin Transformer and the PolSARFormer.

The results of the Flevoland dataset are shown in Table. III
illustrates the utilization of the capabilities for both CNNs
and transformers achieved the highest classification accuracy
with an average accuracy of 98.78% whereas CNNs and trans-
formers achieve 96.87% and 98.56%, respectively. Moreover,
the results of San Francisco demonstrated that the integration
of CNNs and transformers improved the accuracy of PolSAR
classification by 1.93% and 5.36%, respectively, as compared
to CNNs and transformers individually, as shown in Table IV.

D. Impact of training samples on the PolSARFormer

To better understand how the size of training data affects
the performance of the proposed PolSARFormer model, we
evaluated the PolSAR classification accuracy obtained by
the proposed model for varying training ratios in Flevoland
dataset, as shown in Fig 6. The results illustrated that the

PolSARFormer classifier achieves a high classification accu-
racy with significantly less training data (i.e., training ratio
of 0.5% considered from the reference data) in terms of
average accuracy (86.03%) as compared to the Swin Trans-
former with an average accuracy of 75.95%. This demonstrates
the efficiency of the PolSARFormer for classifying PolSAR
imagery, contradictory to the current state-of-the-art vision
transformers that demand a higher number of labelled samples.
In addition, the results show that the classification accuracy
of the PolSARFormer algorithm in terms of average accuracy,
kappa index, and overall accuracy improved by approximately
13%, 8%, and 7% by utilizing 0.5% to 10% training data ratio,
respectively, as seen in Fig 6.

IV. CONCLUSION

This letter presents a vision transformer-based framework
for PolSAR image classification that uses local window atten-
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Fig. 6: A comparison of (a) OA (b) AA and (C) Kappa performance achieved by different classifiers over the various training ratio on the Flevoland dataset.

TABLE III: Classification results of Flevoland dataset in terms of F-1 score (κ = Kappa
index, OA = Overall Accuracy, and AA = Average Accuracy).

Class CNN Transformer CNN+Transformer
Rapeseed 0.99 0.98 0.99

Beet 0.99 0.99 1
Stembeans 0.99 0.99 0.99

Peas 1 1 1
Forest 0.98 0.98 0.99

Lucerne 0.99 0.99 0.99
Wheat 0.99 0.98 0.98
Barley 0.99 1 1

Potatoes 0.98 0.98 0.99
Bare Soils 1 0.96 1

Wheat3 0.99 1 0.99
Water 0.99 0.99 1
Grass 0.97 0.98 0.98

Building 0.84 0.96 0.96
Wheat2 0.99 0.99 0.97

OA×100 98.85 98.77 99.02
AA×100 96.87 98.56 98.78
κ×100 98.74 98.66 98.93

TABLE IV: Classification results of San Francisco dataset in terms of F-1 score (κ =
Kappa index, OA = Overall Accuracy, and AA = Average Accuracy).

Class CNN Transformer CNN+Transformer
Bare Soil 0.87 0.87 0.85
Building 0.98 0.97 0.98

Water 0.99 0.99 0.99
Vegetation 0.83 0.76 0.86
Mountain 0.96 0.93 0.97
OA×100 97.01 96.12 97.39
AA×100 92.69 89.26 94.62
κ×100 95.34 93.9 95.93

tion (LWA) to improve the feature representation capabilities
locally while drastically reducing annotation costs and hard-
ware requirements. The results on two PolSAR benchmark
datasets revealed that the developed model, PolSARFormer,
outperforms the existing state-of-the-art vision transformers
of the Swin Transformer, FNet, and other models. In the San
Francisco benchmark, the PolSARFormer surpassed the Swin
Transformer and FNet by 7.79% and 6.94%, respectively, in
terms of average accuracy. Furthermore, the PolSARFormer
exceeds several other algorithms on the Flevoland dataset, such
as the Swin Transformer (95.31%), AlexNet (97.93%), a 2D
CNN (98.58%), FNet (98.63%), and ResNet (98.82%), with a
Kappa index of 98.93%.
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