From FineFuture to FINEST

Resource Supply for the Energy Transition and Sustainable Value Chains

Stefan Dirlich/Axel Renno/Dieter Stapf/Dietmar Schlosser/Jens Gutzmer HELMHOLTZ ENERGY CONFERENCE | 12.06.2023 | Koblenz

PART 1: FineFuture

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 821265.

FineFuture: Resource technologies for base metals and CRMs

- ✤ Large amounts of base metals and CRMs are required to decarbonize industry and society
- Secure supply at manageable costs and acceptable CO₂ footprint is a challenge

Platinum (Photo: Kalineri)

Copper

Mineral processing of base metals and and CRMs: The challenges

- Exhaustion of natural ore deposits: Cobalt: 0.5-2 kg Co/ t ore; PGMs: some g/t
- Complex composition of the ores: e.g.cobalt forms tiny structures (width: some µm, 10-50 µm long)
- ✤ more and more valuables are finely disseminated
- all mineral processing technologies have big problems with fine particles
- In addition:
 - High losses of valuables of up to 30%
 - Large tailing ponds
 - huge environmental and safety problems

©Eriez, MEI Flotation `17

Photo: Vinícius Mendonça/Ibama Mais informações

Focus of FineFuture

Innovative flotation technology based on fundamental understanding

Complex ores, e.g. Chalcopyrite with quartz

MAGNA MACHESITA MANANANA Copper Ores

else is, e.g.:

Manganese Ores (Gabun)

MANGANESE ORES – for steelmaking and foundry activities, chemical uses: batteries, animal feed, water treatment

Sculptures are not made of it. Almost everything

Crucial and irreplaceable refractory material
Various applications in the chemical industry

· Important for fertilizer production

Knowledge-driven + to industrial scale

From mineral surfaces

via particle-bubble attachment in turbulent flows

12.6.2023 HEMLHOLTZ ENERGY CONFERENCE 6

Maelgwyn ImhoflotTM Cells (second generation)

via pilot scale

From lab scale + via pilot scale + to industrial scale

Industrial Scale Flotation – Case studies (Copper ore/Tailings)

licrobubble-Generato

MBGen 15.000

I. Large scale injection of microbubbles

IF type 48m³ flotation cell

II. Optimized pneumatic flotation reactor

 Pilot (semi-industrial) plant 30 m³/h at KGHM copper concentrator

FineFuture...lots of Lessons Learned, e.g.

- There is no single reagents formulation that can be applicable and efficient for the recovery of all minerals.
- Limited capability of existing advanced optical diagnostics to study experimentally bubbleparticle collisions under turbulent conditions.
- Partly efficient CFD (Computational Fluid Dynamics) multiphase simulations incorporating the innovative complex flotation kinetics developed in FineFuture.
- Bubbles generation is a reactor dependent process
- FineFuture lab scale pneumatic cell showed promising results for ultrafine particles

More work on **finetuning and refining** of theoretical and engineering features based on **large scale tests**.

We are very grateful to the European Union's Horizon 2020 research and innovation programme for funding our works under grant agreement No. 821265.

Spitzenforschung für große Herausforderungen.

HELMHOLTZ

Helmholtz Sustainability Challenge

Use and management of **finest** particulate anthropogenic material flows in a sustainable circular economy

Central research question & research approach

Central research question

FINEST will find sustainable solutions for fine-grained residues from various sources that are currently only disposed of and not utilized

FINEST Approach

Through cleaning, separation, and blending processes several types of valuables and inert residues will be generated economically viable and ecologically benign.

FINEST Consortium and Project Structure

HELMHOLTZ

Subproject 1: **FINEST** Microplastics

General objective → Bio-based recycling of (micro-) plastic residues

Goals - products:

- **Biocatalysts** to convert plastics fractions to yield
 - specific mono-/oligomers for product synthesis,
 - microbial biomass amenable to further microbial fermentation and
 - inert and safe residues for deposition
- Anchor peptide arrays enabling improved accessibility of microplastics for degrader enzymes and separation/detection of plastics
- Novel thermal sensors for non-invasive process monitoring

Subproject 2: FINEST Mineral Additives

General objective → Recovery of mineral additives during chemical recycling

Goals:

- Mapping & Characterization
- Sensors (process control)
- Monitoring during pyrolysis
- Use in RC-Cement
 - Additive partitioning
 - Effects on products
- LCA for decentralized recycling plants

Verpackung: Durch den 40 %igen Kreideanteil reduziert sich der Kunststoffbedarf auf ein Minimum. Zur Herstellung ist nur sehr wenig Wasser und Energie erforderlich.

Subproject 3: FINEST Disperse Metals

C FINEST

General objective → Blending of complex residues, metal recovery or benign storage

WORK PACKAGES	MILESTONES
1 knowledge management	database for mass balances – modelling – technology ready
2 inline process control (sensors + simulations)	software for inline process control developed
A high-temperature processes ■	metal recovery and inertisation raised from TRL 3 to 4
4 mixing and agglomeration	safe mixing possible at TRL 3 to 5
S assessment economic, ecological and social	inline and offline assessment of processes (incl. SP1 and SP2)

HELMHOLTZ

FINEST Satellite Projects

Goals:

- Short-term projects diversifying the campaign
- High risk-high gain approaches
- Linking to core projects or filling gaps

- **Objective:** Utilization of end-of-life carbon fibers (no solution so far and high hazardous risk)
- Increasing demand for carbon fiber reinforced plastics CFRP;
- Downcycling issue
- Generation of respirable fiber fragments during treatment of (_____
- Degradation of CF in thermal processes

with sufficient temperature, residence time and back-mixing – industry processes

Research proposal:

- Basic investigations on fiber degradation scale-up, process integration, demo, evaluation
- Potential industry partners: fiber suppliers (e.g. CU), applicants pyrometallurgy (e.g. BSW)

Objective: Multi-step flotation separation with special focus on variable selective hydrophobization and depression of the anthropogenic particles (*innovative challenge*)

Approach:

- PhD study on effective ultrafine particle pneumatic froth flotation separation
- Material focus: Waste Dust from air classified shredder fine fractions containing valuable metals plastic components and complex inorganics
- Fluid dynamic enhancements to enable efficient particle-bubble coalescence and reduced unselectiv ultrafine particle entrainment
 Air classification of shredder fractions

Pneumatic Fines Flotatio

of Waste Dust from Air

Classifier

Societal relevance & impact

Impact on education

- Interdisciplinary expertise
 - Resource management
- Life-cycle thinking
- Industrial ecology

Impact on industry

- Reduction of waste
- Valorisation of residues
- Knowledge transfer
 - Skilled personnel
- Tech transfer

The Future is Circular.

This work was performed as part of the project 'Use and management of **finest** particulate anthropogenic material flows in a sustainable circular economy' (**FINEST**), which is funded by the Initiative and Networking Fund of the Helmholtz Association (grant agreement number KA2-HSC-10).

NY STREET, NY STREET,

a she mu was thing

