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Abstract

The p-center problem is finding the location of p facilities among a set of n

demand points such that the maximum distance between any demand point

and its nearest facility is minimized. In this paper, we study this problem

in the context of uncertainty, that is, the location of the demand points may

change in a region like a disk or a segment, or belong to a finite set of points.

We introduce Max-p-center and Min-p-center problems which are the worst

and the best possible solutions for the p-center problem under such locational

uncertainty. We propose approximation and parameterized algorithms to solve

these problems under the Euclidean metric. Further, we study the MinMax

Regret 1-center problem under uncertainty and propose a linear-time algorithm

to solve it under the Manhattan metric as well as an O(n4) time algorithm

under the Euclidean metric.

Keywords: Facility location, p-center, Uncertainty, Regret, Robustness,

Approximation algorithms.

1. Introduction

The p-center problem (also called k-center problem) is a classic facility lo-

cation problem with many real-world applications, such as locating emergency
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facilities. In this problem, given a set of n demand points (customers) and a

number p < n, the goal is to place p facilities (centers) such that the maximum5

distance between any demand point and its nearest center is minimized. Most

of the studies on this problem have an important assumption that the location

of the demand points is precise. So, the cost between the centers and customers

is certain and exact. However, there are considerable sources of uncertainty

and/or error in the real world, such as modeling the problems, data gathering,10

computations and implementing outcomes of the algorithm [1, 2, 3]. For ex-

ample, when traveling time is considered as the cost between the centers and

customers, it may vary because of traffic jams, weather conditions, etc. Also,

it is possible the location of the customers is uncertain –called locational un-

certainty [4]. For example, consider a set of mobile devices such as cell phones15

or laptops that move in predefined rooms, and receive signals (like Wifi) from

some access points. In this paper, we focus on this challenge and investigate the

p-center problem under uncertainty.

The p-center problem with the precise location of demand points is an NP-

hard problem for both the Euclidean and Manhattan metrics [5, 6]. So, there is20

no polynomial-time algorithm to solve it in the general case, and only limited

versions of the problem have been solved in polynomial time, such as small

and constant numbers of p. For p = 1, the problem is called the smallest

enclosing circle, and efficient (almost linear time) algorithms have been proposed

for solving it [7, 8, 9]. For p = 2, the problem was solved in O(n log2 n) time25

using a divide and conquer approach [10]. The rectilinear 3-center problem was

solved optimally in linear time [11]. Different variations of the problem such

as the p-center problem on trees [12, 13] and on a line [14] have been studied

as well. Further, for the general cases of the p-center problem, approximation

and heuristic approaches have been proposed [15]. All of these studies have30

considered the locations of the customers to be exact, and so assume a certain

distance function between the centers and demand points.

In this paper, we assume the location of the demand points is uncertain and

may change in a given region like a disk or a segment, or belongs to a finite
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set of potential candidates. First, we consider two natural extensions of the35

p-center problem for uncertain demand points, called Max-p-center and Min-p-

center. Max-p-center is the p-center for the worst replacement of the demand

points in their corresponding regions, and Min-p-center is the same for the best

replacement. After reviewing related studies in the next section, we define Max-

p-center and Min-p-center problems formally in Section 3. We present a simple40

2−approximation algorithm to solve Max-p-center problem under the Euclidean

metric when the regions are disjoint disks or a set of discrete points. Also, we

present a (1+ 2
k+2 )−approximation algorithm when the regions are k-separable

(See Definition 1). Further, we consider the Min-p-center problem under the

Euclidean metric and present a (1 + 2
k )−approximation algorithm when the45

regions of uncertainty are k-separable disks or a set of discrete points. In Section

4, we introduce a new extension of the p-center problem under uncertain demand

points, called MinMax Regret. The regret is the difference between the cost

(maximum distance) of a given solution and the cost (maximum distance) of the

optimal solution for a particular placement of the uncertain points. The worst50

case of the regret between all possible placements of the uncertain parameters is

called MaxRegret . We study this problem only for the case p = 1, and present a

linear-time algorithm to solve it under the Manhattan metric when the regions of

uncertainty are horizontal segments. Also, we present an O(n4) time algorithm

for solving the MinMax Regret 1-center problem under the Euclidean metric55

when the regions of uncertainty are n horizontal segments. Finally, in Section

5, we make concluding remarks and discuss future directions.

2. Related work

In addition to the remarkable history of the classic p-center problem and

its different variations for certain demand points, some studies have consid-60

ered the problem under uncertainty. Foul [16] studied the Euclidean 1-center

problem under uncertainty for a set of n demand points that have a uniform

distribution inside rectangles. Chen et al. [17] studied one dimensional p-
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center problem in which the location of each demand point is modeled using

m possible locations with a probability distribution function. They proposed65

an O(mn logmn + n log p log n) time algorithm to solve this problem. Other

variations of the p-center problem have been studied under this model of uncer-

tainty. The one dimension 1-center problem, the 1-center problem on the trees

and the rectilinear 1-center problem in the plane were studied under this model

and several probabilistic algorithms were proposed to solve them [18, 19].70

Löffler and van Kreveld [20] presented efficient algorithms for 1-center prob-

lem when the uncertainty regions are modeled by squares or disks. The goal is

finding a point from each region such that the Smallest Enclosing Circle (SEC)

of them is minimized or maximized. For a set of regions as the input, the goal

is to place a point in each region such that the SEC is minimized or maximized.75

They proved that when the uncertainty is modeled by disk-shaped regions, the

smallest possible SEC and the largest possible SEC can be solved in linear time.

Kouvelis et al. [21] presented an O(n4) algorithm for the MinMax regret 1-

median problem on a tree with n nodes, where the uncertainty is considered as

interval numbers. A case of the MinMax regret 1-median on a tree was studied80

in which the weight of the vertices and the length of the edges are uncertain.

Bhattacharya et al. [22] presented a linear time algorithm for this case of the

MinMax regret 1-median problem. Also, they presented an O(n log2 n) time

algorithm to consider the negative weights [23].

Averbakh [24] proved that the MinMax regret 1-median problem on a net-85

work with uncertain edge length is strongly NP-hard. Yu et al. [25] studied

the problem on general graphs and for a graph with n vertices and m edges

presented an O(mn2 + n3 log n) time algorithm when the weight of the vertices

is uncertain. They also presented an O(n log2 n) time algorithm for the MinMax

regret 1-center problem on a tree with n weighted vertices when the weights are90

uncertain.

Burkard and Dollani [26] presented an algorithm with O(n3 log n) time com-

plexity for the MinMax regret 1-center problem when both the length of edges

and the weight of vertices are uncertain. They proposed an O(n log n) time
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algorithm for the MinMax regret 1-center problem when the length of edges is95

uncertain. Yu et al. [25] presented an algorithm with O(mn log n) time com-

plexity for the special case of the MinMax regret 1-center when the weight of

the vertices is uncertain. Alipour and Jafari [27] have focused on the expected

maximum distance in p-center problem. They introduced the assigned and unas-

signed uncertain p-center problems and proposed approximation algorithms for100

solving them.

Averbakh et al. [28] studied 1-median and weighted 1-center problems in the

plane. They presented an O(n2 log2 n) time algorithm for the 1-median problem

and an O(n log n) time algorithm for the 1-center problem under the Manhattan

metric. They also studied the weighted 1-center problem in the plane where the105

weight of demand points is uncertain. They presented an (n22α(n) log2 n) time

algorithm to solve this problem, where α(.) is the inverse of the Ackermann

function.

3. Max- and Min- p-center Problems

The p-center problem under locational uncertainty of the demand points is110

formally defined as follows. Let ℜ = {R1, R2, ..., Rn} be a set of n uncertain

demand points, that is, the location of i-th demand point may change in a

region Ri. In this paper, we shall refer to them as “regions of uncertainty”, and

consider three shapes, disk-shaped region, segment-shaped region and discrete

sets. Let I = {p1, p2, ..., pn} be a placement (or say instance) of the demand115

points, i.e., pi ∈ Ri, for i = 1, 2, ..., n. Let p − center(I) denote the optimal

solution of the p-center problem for an instance I. Let C = {c1, c2, ..., cp}, where
ci ∈ R2, for i = 1, 2, . . . , p, be a set of p centers in the plane. So, the p-center

problem is

p− center(I) = min
C

max
pi∈I

dis(pi, C),

where dis(pi, C) is the Euclidean distance between pi and the nearest center120

in C, i.e., dis(pi, C) = min1≤j≤p dis(pi, cj). Therefore, Max-p-center problem
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and similarly the Min-p-center problem are the problems of finding the extreme

instances Imax and Imin such that

Imax : max
I

p− center(I),

Imin : min
I

p− center(I).

Indeed, Imax is the worst placement of the demand points which results in

the maximum possible for the optimal solution of the p-problem, so it is the125

pessimistic scenario for the arrangement of the demand points. On the other

hand, Imin denotes the optimistic scenario for the demand points and it is the

best placement that results in the minimum possible solution for the p-center

problem. Therefore, Imax and Imin together provide a range for the solution

value of the p-center problem, and they can help a decision-maker who designs130

layouts and locates the centers among the demand points under such locational

uncertainty.

The decision version of Max-p-center problem can be described as follows.

For a given threshold τ , and a set of uncertainty regions ℜ, whether p–center(I) ≥
τ or not?. Similarly, the decision version of Min-p-center problem asks whether135

p–center(I) ≤ τ ?.

Theorem 1. If P ̸= NP , the decision version of Max- p-center problem (or

Min- p-center problem) for a given set of uncertainty regions, like disk or seg-

ment shaped regions or discrete sets, does not belong to NP-complete problems.

Proof. It is well-known the decision version of the classic p-center problem140

is NP-complete. Now, by contradiction, if the decision version of Max- p-center

(or Min- p-center) problem is an NP-complete problem, we should be able to

verify an instance of the problem in polynomial time. However, verifying such

an instance is equivalent to determining whether the answer of the p-center

problem for such instance is less than or equal to a decision parameter, which145

results in solving the decision version of the p-center problem in polynomial

time, which is a contradiction. Therefore, the decision version of Max- p-center
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(or Min- p-center) problem belongs to NP-complete problems, i.e., it may belong

to the class of NP-hard problems which are not NP-complete or even belong to

the class of problems which are not NP-hard. □150

Theorem 1 shows the impossibility of solving the problems of Min-p-center

and Max-p-center in polynomial time (while P ̸= NP ). So, we focus on ap-

proximation solutions.

3.1. Max- p-center Problem

In this part, we consider the Max-p-center problem when the regions of155

uncertainty are modeled as (i) disjoint disks, or (ii) discrete sets. We present

a 2−approximation algorithm for the disjoint disks and extend it to provide a

parameterized approximation algorithm for the special case of the Max-p-center

problem when the regions are well-separable (see Definition 1).

Our algorithm is very simple, that is, “Choose the centers of the regions160

of uncertainty as the output instance”. For the discrete sets, it is sufficient

to choose the points whose maximum distance from the other points of the

set is minimized. In Theorem 2, we show that such placement results in a

2−approximation solution. Note that, the outcome of this algorithm is an in-

stance, i.e., an approximation for Imax, and to find a solution for the p-center165

problem of such instance, we can use a simple iterative 2-approximation greedy

approach [29].

Through this paper, we point out an assignment of the demand points to

the facility centers as a clustering process. In fact, the difficulty of the p-center

problem is how to cluster the demand points, and if it is known, the optimal170

location of the centers can be obtained in linear time. An example of clustering

with three clusters is shown in Figure 1. In a cluster, each demand point is

served by its nearest center, so, it can be seen as a graph of p stars. The edges

of this graph are between the demand points and their corresponding nearest

center, and we refer to the distance between them as the weight of that edge.175

Two clusters have the same structure if the assignments of demand points to

the centers are the same. In other words, for any pair of demand points, if they
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Figure 1: Clustering for three facility centers.

are served by the same center in one cluster, they are served by the same center

in the other cluster as well.

Theorem 2. Let D be a set of disjoint disks as the regions of the uncertainty180

in the Max-p-center problem. The algorithm that chooses the center of disks as

the output instance is a 2−approximation algorithm.

Proof. We consider three clusters Copt, Cc−opt and C ′. Copt is the solution of

the Max-p-center problem, e.g., Imax, Cc−opt is the optimal solution when the

centers of the disks are chosen, and C ′ is the cluster which has the same structure

with Cc−opt and the same placement with Imax. We compare Cc−opt and Copt

using C ′. In the p-center problem, the goal is to minimize the maximum length

edge in all the clusters. Let emax−opt be the maximum distance between any

demand point and its assigned center in Copt. Actually, emax−opt is the edge

with maximum length in Copt. Similarly, let ec−max and e′max be the edges with

maximum length in Cc−opt and C ′, respectively. Figure 2 illustrates the clusters

Cc−opt, Copt and C ′. Since the location of demand points in C ′ and Copt are

the same, thus

emax−opt ≤ e′max. (1)

Since Cc−opt and C ′ have the same structure, if the location of the demand

points changes anywhere on disks, the length of each edge increases at most as
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Figure 2: Three different clusters for the Max-p-center problem.

much as the sum of the radius of two (disjoint) disks. So,185

e′max ≤ 2ec−max. (2)

According to inequalities 1 and 2, we have

emax−opt ≤ 2ec−max. (3)

We compare the corresponding edges in Cc−opt and C ′. Note that, the

longest edges in these two clusters may be different. We claim that inequality

2 is established even for this case. Suppose that in Cc−opt, e is corresponding

edge with e′max in C ′. So,

e′max ≤ 2e. (4)

Since ec−max is edge with maximum length and e is an edge in Cc−opt, then

e ≤ ec−max. (5)

According to inequalities 4 and 5

e′max ≤ 2ec−max. (6)

Therefore the inequality 3 holds even for this case. Consequently, the proof is

complete. □

Theorem 2 states that the set of the center of disks constructs a 2−approximation

for Imax when the disks are disjoint. In the following, we show that there is a190

nice relationship between the approximation ratio of such a solution and sepa-

rability factor of the disks by proposing a parameterized approximation ratio.
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Definition 1. For a set of disks D, let rmax be the radius of the largest

disk. D is called k-separable, if the minimum distance between any pair of disks

in D is at least k · rmax. For an input such as D, separability is the maximum195

k such that D is k-separable.

Theorem 3. Let D be a set of k-separable disks as the region of uncertainty in

the Max-p-center problem. The algorithm that places the center of disks as the

instances of the demand points is a (1 + 2
k+2 )−approximation algorithm.

Proof. This proof is similar to the proof of Theorem 2. We consider Cc−opt, C
′

200

and Copt as before. Suppose e
′ is an arbitrary edge in C ′, and di and dj are two

disks connecting with e′. Let ri and rj be the radius of di and dj , respectively,

and l be the distance between di and dj . Also, let e be the corresponding

edge with e′ in Cc−opt whose weight is l + ri + rj . The weight of e′ is at most

l+ 2ri + 2rj . So, the weight of an edge in C ′ to the weight of its corresponding205

edge in Cc−opt is at least:

e′

e
=

l + 2ri + 2rj
l + ri + rj

≤ k · rmax + 2ri + 2rj
k · rmax + ri + rj

≤ k · rmax + 2rmax + 2rmax

k · rmax + rmax + rmax
=

k + 4

k + 2
. (7)

This inequality holds for any edge in Cc−opt. So, regarding the inequality 7,

e′max ≤ k + 4

k + 2
ec−max, (8)

where ec−max is the edge with maximum weight in Cc−opt and e′max is the edge

with maximum weight in C ′. Since Copt and C ′ have the same demand points,

so,

emax−opt ≤ e′max, (9)

where emax−opt is the edge with maximum weight in Copt. According to in-

equalities 8 and 9, we have

emax−opt ≤
k + 4

k + 2
ec−max. (10)
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Therefore, the set of center of the disks is k+4
k+2 = (1+ 2

k+2 )− approximation

solution. □

Now, we show that the idea behind the parameterized approximation algo-

rithm can be applied to the region of uncertainty of the demand regions modeled210

by discrete sets. We are given a set of points for each uncertainty region, e.g.,

S = {S1, S2, ..., Sn}, where Si, for i = 1, 2, ..., n, is a set of points. The goal

is finding an instance I, such that p − center(I) is maximized. Similarly, S is

called k-separable, if the minimum distance between any pair of regions is not

less than k times the maximum distance between the points in any region.215

Theorem 4. Let S = {S1, S2, ..., Sn} be a set of k-separable regions of uncer-

tainty which are modeled by discrete sets. The Max-p-center problem for S can

be solved with k+4
k+2 = (1 + 2

k+2 ) approximation ratio.

Proof. The proof is similar to the proof of Theorem 3. It is sufficient that

instead of choosing the center of disks as the instances, choose the point si ∈ Si220

whose maximum distance from any point in Si is minimized. The point si is

the solution of the discrete 1-center problem [8], that is, the smallest enclosing

circle of Si whose center should be one of the points in Si. Since the solution

of 1-center for each set Si is a point of Si whose maximum distance from the

other points in Si is minimum one, it satisfies the necessary conditions for the225

proof. □

3.2. Min-p-center Problem

In this subsection, we study the Min-p-center problem. As defined in the

previous section, the goal of the problem is finding an instance I among all

possible instances, such that p− center(I) is minimized. Let Imin denote such230

an instance. Similar to the Max-p-center problem, we show that choosing the

center of each region results in a good approximation for Imin, i.e., a (1 +

2
k )−approximation solution when the regions are k-separable.

11



Theorem 5. Let D be a set of k-separable disks as the regions of the uncertainty

in the Min-p-center problem. The algorithm that places the center of disks as235

the instances of the demand points is a (1 + 2
k )− approximation algorithm.

Proof. This proof is similar to the proof of Theorem 3, however, the definition

of the clusters is different. Let Copt be the solution of Min-p-center problem,

Cc−opt be the solution of p-center for the center of the disks and C ′ be the cluster

which has the same structure with Copt and the same location of demand points

with Cc−opt. Since both Cc−opt and C ′ are the clusters on the center of disks

and Cc−opt is the optimal solution of the p-center problem, we have

ec−max ≤ e′max, (11)

where ec−max is the edge with maximum weight in Cc−opt and e′max is the edge

with maximum weight in C ′.

We consider an arbitrary edge e′ ∈ C ′. Suppose di and dj are two connecting

disks by e′. Let ri and rj be the radius of di and dj , respectively, and l be the

maximum distance between di and dj . Suppose two disks di and dj in Copt are

connected by an edge e whose weight is at least l. So, the weight of e′ is at most

l+ ri + rj . So, the weight of an edge in Copt to the weight of its corresponding

edge in C ′ is at least

e

e′
=

l

l + ri + rj
≥ k · rmax

k · rmax + ri + rj

≥ k · rmax

k · rmax + rmax + rmax
=

k

k + 2
. (12)

This is established for any edge in Copt and its corresponding edge in C ′. So,

emax−opt ≥
k

k + 2
e′max, (13)

where emax−opt is the edge in Copt with maximum length. According to inequal-

ities 11 and 13, we have

emax−opt ≥
k

k + 2
ec−max. (14)

Thus, the proof is complete. □
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Theorem 6. The problem Min-p-center for a set of k−separable discrete sets as240

the regions of the uncertainty can be solved with k+2
k = (1+ 2

k )− approximation

ratio.

Proof. Similar to the proof of Theorem 4 and Theorem 5. It is sufficient

to choose the solution of the discrete 1-center problem [8] as the instance Imin,

and follow the proof of Theorem 5. □245

4. MinMax Regret 1-center problem

In this section, we study the planar MinMax regret 1-center problem under

the Manhattan and Euclidean metrics. As aforementioned, general cases of

the MinMag regret are NP-hard and only special cases of MinMax regret 1-

center problem have been solved in polynomial time. We assume a simple case250

of uncertain demand points where the regions of uncertainty are horizontal

segments and present a linear-time algorithm for the Manhattan metric as well

as an O(n4) time algorithm for the Euclidean metric.

Let ℜ = {R1, R2, . . . , Rn} be a set of n regions of uncertainty in the plane

as the n locational uncertain demand points, and I = {p1, p2, . . . , pn} be an255

instance of it, i.e., pi ∈ Ri, for i = 1, 2, . . . , n. For a point x ∈ R2, F (x, I) is

defined as follows:

F (x, I) = max
1≤i≤n

d(x, pi), (15)

where d(x, pi) is the distance (Manhattan or Euclidean in this paper) between

x and pi. The optimal solution of 1-center problem for the instance I can be

defined as follows

F ∗(I) = min
x∈R2

F (x, I). (16)

Now, the difference value F (x, I)− F ∗(I) is called Regret for a point x and an

instance I. Let denote the worst case of the regret for x by MaxREGR defined

as follows

MaxREGR(x) = max
I∈Ω

(F (x, I)− F ∗(I)), (17)

13



where Ω is the set of all possible instances. The MinMax regret 1-center problem

is finding x such that MaxREGR(x) is minimized. MinMax regret solutions are

sometimes called Robust solution [30] as well. For the sake of simplicity, we260

denote this problem by ROB which is

ROB(ℜ) = min
x∈R2

max
I∈Ω

(F (x, I)− F ∗(I)).

We consider both the Manhattan and Euclidean metrics and propose algo-

rithms for ROB where ℜ is a set of horizontal segments.

4.1. MinMax Regret 1-center Problem under the Manhattan Metric

In this section, we present a linear-time algorithm for the MinMax regret265

1-center problem under the Manhattan metric, where the regions of uncertainty

are horizontal segments. Let Ir ∈ Ω and Il ∈ Ω denote the two particular

instances including the rightmost and the leftmost placements of the segments,

respectively. Also, let pl and pr be the solution of 1-center problem for the

instances Ir and Il, respectively. From the geometric point of view, the optimal270

solution of the 1-center problem under the Manhattan metric is the smallest

square which is rotated π
4 and contains all instances of the demand points. To

determine such a square, we need at most four boundary points (two in the

degenerated case). Let call these boundary points critical points [31].

Lemma 1. For any point x ∈ R2, two instances which lead to the MaxREGR(x)275

in the Manhattan metric are either Ir or Il when the regions of uncertainty are

horizontal segments.

Proof. Clearly, we only need to consider the critical points (segments) that

determine the smallest enclosing π
4 rotated square, and for the segments that lie

completely inside the square, we can freely move their chosen points to the left280

or right endpoints. Assume to the contrary there is an instance I ∈ Ω different

from Ir and Il such that leads to MaxREGR(x) for R2. So, F (x, I) − F ∗(I)

is the maximum difference value among all possible instances. Now, let p be

the one of points on the boundary of the rotated square of 1-center solution

14



(a) The case x lies right side of the op-

timal 1-center solution of I

(b) The case x lies left side of the opti-

mal 1-center solution of I

Figure 3: Constructing a worse instance I′ using an instance I whose some chosen point, like

p, does not belong to the endpoints of the segments. It is sufficient to move p to the left

endpoint (a) or to the right endpoint (b) to obtain a larger value for ROB.

in the Manhattan metric such that has the maximum distance from x, i.e.,285

d(x, p) = F (x, I). Let x∗ be the solution of the 1-center problem for the instance

I. Thus, F ∗(I) = d(p, x∗). Thus, F (x, I) − F ∗(I) = d(x, x∗). If x∗ is the left

(right) of the x, we can construct a new instance I ′ ∈ Ω by moving p to the

left (right) endpoint of its corresponding uncertainty region results. Since we

only move p in the horizontal direction, the solution of 1-center problem for the290

instance I ′ compared to x∗ moves in the same direction as well. Figure 3 displays

an example for this case. Let denote the optimal solution for I ′ by x′∗. Observe

that d(x, x∗) ≤ d(x, x′∗) and it means F (x, I) − F ∗(I) ≤ F (x, I ′) − F ∗(I ′).

Therefore, I does not lead to the MaxREGR(x), which is a contradiction. □

This lemma results in an efficient approach to computing the optimal so-295

lution for the ROB problem under the Manhattan metric by considering the

critical leftmost and rightmost instances.

Theorem 7. The ROB problem under the Manhattan metric can be computed

in linear time when the uncertainty regions of the demand points are horizontal

segments.300

Proof. According to Lemma 1, either Ir or Il leads to MaxREGR(x). So,
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consider x∗
r and x∗

l are the solutions of 1-center for Ir and Il, respectively. So,

the middle point of x∗
r and x∗

l is the solution to the ROB problem. Since such

solutions can be computed in linear time, so does the ROB problem. □

4.2. MinMax Regret 1-center Problem under the Euclidean Metric305

In this section, we study the ROB problem under the Euclidean metric,

where the regions of uncertainty are horizontal segments. From the geometric

point of view, the Euclidean 1-center problem is as finding the minimum circle

covering all the demand points. Megiddo proposed a parametric search algo-

rithm for this problem in linear time [9]. We utilize this algorithm to solve the310

ROB problem. First, we show that the endpoints of the segments play the main

role in determining the optimal solution of ROB.

Lemma 2. When the location of demand points are horizontal segments, for

any point x ∈ R2, MaxREGR(x) is a distance between x and some endpoints

of the segments.315

Proof. Assume to the contrary I ∈ Ω is an instance that leads to the

MaxREGR(x) and includes some boundary placement, such as p ∈ I that

does not belong to the endpoints of its corresponding segment. Similar to the

Manhattan case, it is possible to construct a worse instance by moving p toward

one of the left or right endpoints. Let p ∈ I lie on the boundary of the minimum320

covering circle of I, so, x has the maximum distance from p compared to other

points of I. Thus, d(p, x) = F (x, I) and F ∗(I) = d(p, x∗), where x∗ is the center

of I. If x∗ is the right (left) side of x, then by moving p to the right (left) endpoint

(denote by p′), a worse instance I ′ ∈ Ω be constructed. Let denote the center

of the minimum covering circle of I ′ by x′∗. Observe that d(p, x) ≤ d(p′, x).325

Such a movement results in the center of the minimum covering circle moves to

the right (left) as well. Thus, d(p, x∗) ≤ d(p, x′∗). We have d(p′, x)− d(p, x) ≥
d(p, x′∗)−d(p, x∗). So, F (x, I)−F ∗(I) ≤ F (x, I ′)−F ∗(I ′). Therefore, I cannot

be a solution for MaxREGR(x), which is a contradiction. □
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Lemma 2 helps to discretize the search space of the ROB problem and confine330

it to only the endpoints of the regions of the uncertainty (the demand segments).

However, there is an exponential number of combinations of the endpoints and

we need to prune the combinations that do not affect the optimal solution of

the problem.

Lemma 3. For a set of n regions of uncertainty whose shapes are horizontal335

segments, there are at most O(n3) different instances as the possible candidates

for the optimal solution of the ROB problem.

Proof. As a simple fact, among a set of points in the plane, only two or

three points determine the minimum enclosing circle of the points. So, at most

O(n3) triple of points may be considered. On the other hand, lemma 2 showed340

that the optimal solution of the ROB problem is obtained from the instances

in which endpoints of segments are chosen. So, there are O(n2) different pairs

and O(n3) different triples of the segments that should be investigated. Also,

for each triple, there are 23 = 8 combinations of the endpoints. □

Therefore, there are O(n3) candidates for the optimal solution of the ROB345

problem. Note that, we need to consider only the combinations that their

minimum circle covers all the demand points. Since such a feasibility check can

be done in linear time, the whole process of finding all feasible candidates takes

O(n4) time.

Theorem 8. For a given set of n regions of uncertainty whose shapes are hor-350

izontal segments, the ROB problem under the Euclidean metric can be solved in

O(n4) time.

Proof. According to Lemma 3, there are at most O(n3) candidate instances

for the ROB problem and their feasibility can be verified in linear time. Thus,

in O(n4) it is possible to compute all feasible centers of the minimum covering355

circles of the demand points. Each center can play an optimal solution for the

Euclidean 1-center problem for some instances of the demand points. Regarding

the definition of the ROB problem, we need to find a point whose maximum
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difference from such optimal centers is minimized. That is, again we should

compute the minimum covering circle of such centers. Since there are at most360

O(n3) centers, using a linear time approach such as Megiddo’s algorithm [9],

the centroid of the minimum covering circle of these centers can be computed

in an additional time O(n3). Consequently, the ROB problem can be solved in

O(n4) time. □

5. Conclusion and Future Work365

The p-center problem is a well-known facility location problem with sig-

nificant real-world applications and has been studied considerably. Since such

applications may encounter data uncertainty, we studied this problem in the

context of uncertainty, that is, the location of the demand points may change in

a predefined shape such as disk, segment, or discrete sets. We introduced three370

different versions of the problem, called Max-p-center problem, Min-p-center

problem and MinMax Regret 1-center, and proposed approximation and poly-

nomial time algorithms to solve them. All three problems are NP-hard, and we

present 2−approximation solutions as well as parametrized algorithms for the

first and second problems. Our algorithms work only for disk-shaped regions375

and discrete sets which are well-separated. Further, for the third problem, we

only considered the problem for the case p = 1, and proposed a linear time for

the Manhattan metric as well as an O(n4) time algorithm for the Euclidean

metric, where n is the number of demand points. In this problem, we assumed

horizontal segment-shaped regions.380

Since p-center problem in the general case, when p is a part of the input,

is an NP-hard problem, its extensions to the uncertain demand points remain

NP-hard. Here, we assumed uncertainty only for the location of the demand

points, however, it can be generalized for the defined cost function between the

centers and the demand points. Further, we assumed the uncertainty regions385

for the disk-shaped and discrete sets. As an interesting future direction, it may

consider general shapes of regions of uncertainty. Also, for the MinMax-Regret
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problem, it is interesting to find solutions for p > 1.
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