Phase Retrieval by a Conditional Wavelet Flow: **Applications to Near-field X-ray Holography**

R. AGUILAR¹, Y. ZHANG¹, A. WILLMANN¹, E. THIESSENHUSEN¹, J. DORA², J. HAGEMANN², A. LOPES³, I. GREVING³, B. ZELLER-PLUMHOFF³, M. OSENBERG⁴, M. BUSSMANN^{1,5}, U. SCHRAMM^{1,6}, T. COWAN^{1,6}, J. KELLING^{1,7}

¹Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, ²Deutsches Elektronen-Synchrotron, Hamburg, Germany, ³Helmholtz-Zentrum Hereon, Geesthacht, Germany, ⁴Helmholtz-Zentrum Berlin, Berlin, Germany, ⁵CASUS, Görlitz, Germany, ⁶Technische Universität Dresden, Dresden, Germany, ⁷TU Chemnitz, Chemnitz, Germany

HELMHOLTZ ZENTRUM **DRESDEN** ROSSENDORF

Near-Field X-ray Holography

FZP: Fresnel Zone Plate OSA: Order Sorting Apertures

Conventional algorithms

- Assume certain object properties and optical propagation regimes
- Time-consuming process of tuning a wide range of free parameters
- Inference: minutes/projection

Machine learning-assisted phase retrieval

- + Fast inversion for large image datasets
- + Parallelized training of different image resolutions
- + Inference: seconds/projection

Phase information is **lost**: ill-posed problem

Fresnel free-space propagator: $\mathcal{D}_{\mathrm{Fr}}(\Psi) = \mathcal{F}^{-1} \{ \exp((-i\pi)/(2 \,\mathrm{Fr})(\varepsilon^2 + \eta^2)) \mathcal{F}[\Psi] \}$

 Ψ : complex wavefield ($\Psi = A \exp(i\phi)$) ε, η : inverse space coordinates Fr: Fresnel number (Fr = $\Delta x^2 / \lambda z$) Δx : detector pixel size λ : source wavelength *z*: propagation distance

The dimensionless Fresnel number used as a single parameter shows the generality and transferability of the model.

- A multi-scale normalizing flow architecture based on wavelets.
- Maps a complex distribution p(x) to a distribution p(z) which allows simple sampling by applying a series of **invertible**

Conditional Wavelet Flow

Training

- Input x is decomposed by a Haar wavelet transform.
- Coupling layers learn the conditional distribution of the details. The remaining average is forwarded to the next Conditional Wavelet Flow level.

transformations f_i (coupling layers): $z = f(x) = f_1 \circ f_2 \circ \cdots \circ f_k(x)$

Schematic diagram of a normalizing flow model.

Loss function is based on negative-log likelihood:

 $BPD = \frac{-\log \mathcal{L}(\theta)}{H \cdot W \cdot C \cdot \log 2}$

BPD: bits-per-dimension $\mathcal{L}(\theta) = p_{\theta}(x)$ θ : model parameters H, W, C: height, width, channel

The number of trainable parameters and FLOPs stand for model capacity and complexity, respectively.

↑ model capacity and complexity,

Training path of Conditional Wavelet Flow.

Reconstruction

- To reconstruct images with the trained model, • **the "flow"** is simply reversed (from z to x).
- The **path of the hologram** remains the same.

Hologram is used as a conditional input from which features are extracted from.

Note: Poisson noise is added to the simulated holograms.

cWavelet Flow and U-Net can both reconstruct images of high visual fidelity.

U-Net cannot generate diverse reconstruction given the same

computational resources and time

Conditional Wavelet Flow (cWavelet Flow) has much more efficient training compared to the other models.

Inference has a higher latency than cINN and U-Net.

hologram.

cINN fails to generate images of meaningful contexts and only outputs similar samples \rightarrow mode collapse.

U-Net

SSIM 0.9

References

1. S. Flenner et al., "Hard X-ray nano-holotomography with a Fresnel zone plate", Opt. Express 2020. 2. JJ Yu et al., "Wavelet Flow: Fast Training of High Resolution Normalizing Flows", NeurIPS 2020.

Institute of Radiation Physics · Laser Particle Acceleration

Dr. Ritz Ann Aguilar · r.aguilar@hzdr.de · www.hzdr.de

Ground-truth

