
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Universality of (2+1)-dimensional restricted solid-on-solid models

Kelling, J.; Ódor, G.; Gemming, S.;

Originally published:

June 2016

Physical Review E 94(2016)2, 022107

DOI: https://doi.org/10.1103/PhysRevE.94.022107

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-23645

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1103/PhysRevE.94.022107
https://www.hzdr.de/publications/Publ-23645


Universality of 2+1 dimensional RSOS models

Jeffrey Kelling (2,3) Géza Ódor (1) and Sibylle Gemming (3,4)
(1) Institute of Technical Physics and Materials Science,

Centre for Energy Research of the Hungarian Academy of Sciences
P.O.Box 49, H-1525 Budapest, Hungary

(2) Department of Information Services and Computing,
Helmholtz-Zentrum Dresden-Rossendorf

P.O.Box 51 01 19, 01314 Dresden, Germany
(3) Institute of Ion Beam Physics and Materials Research

Helmholtz-Zentrum Dresden-Rossendorf
P.O.Box 51 01 19, 01314 Dresden, Germany

(4) Institute of Physics, TU Chemnitz
09107 Chemnitz, Germany

Extensive dynamical simulations of Restricted Solid on Solid models in 𝐷 = 2+1 dimensions have
been done using parallel multisurface algorithms implemented on graphics cards. Numerical evidence
is presented that these models exhibit Kardar–Parisi–Zhang surface growth scaling, irrespective of
the step heights 𝑁 . We show that by increasing 𝑁 the corrections to scaling increase, thus smaller
step sized models describe better the asymptotic, long wave scaling behavior.

PACS numbers: 05.70.Ln, 05.70.Np, 82.20.Wt

I. INTRODUCTION

The Kardar–Parisi–Zhang (KPZ) equation [1] de-
scribes the evolution of a fundamental, non-equilibrium
surface growth model by a Langevin equation

𝜕𝑡ℎ(x, 𝑡) = 𝜎∇2ℎ(x, 𝑡) + 𝜆(∇ℎ(x, 𝑡))2 + 𝜂(x, 𝑡) . (1)

The scalar field ℎ(x, 𝑡) is the height, progressing in
the 𝐷 dimensional space relative to its mean position,
that moves linearly with time 𝑡. A smoothing sur-
face tension is represented by the coefficient 𝜎, which
competes a curvature-driven propagation, described by
the nonlinear coefficient 𝜆 and a zero-average Gaussian
stochastic noise. This noise field exhibits the variance
⟨𝜂(x, 𝑡)𝜂(x′, 𝑡′)⟩ = 2Γ𝛿𝐷(x− x′)(𝑡 − 𝑡′), with an ampli-
tude, related to the temperature in the equilibrium sys-
tem, and ⟨⟩ denotes a distribution average. Besides de-
scribing the dynamics of simple growth processes [2] KPZ
was inspired in part by the stochastic Burgers equation
[3] and is applicable for randomly stirred fluids [4], for
directed polymers in random media [5] for dissipative
transport [6, 7] and for the magnetic flux lines in su-
perconductors [8].

Discretized versions have been studied a lot in the past
decades [9–11]. The morphology of a surface of linear size
𝐿 can be described by the squared interface width

𝑊 2(𝐿, 𝑡) =
1

𝐿2

𝐿∑︁
𝑖,𝑗

ℎ2
𝑖,𝑗(𝑡)−

(︁ 1

𝐿

𝐿∑︁
𝑖,𝑗

ℎ𝑖,𝑗(𝑡)
)︁2

. (2)

In the absence of any characteristic length simple growth
processes are expected to be scale-invariant

𝑊 (𝐿, 𝑡) ∝ 𝐿𝛼𝑓(𝑡/𝐿𝑧), (3)

with the universal scaling function 𝑓(𝑢)

𝑓(𝑢) ∝
{︂

𝑢𝛽 if 𝑢 ≪ 1
const. if 𝑢 ≫ 1

(4)

Here 𝛼 is the roughness exponent in the stationary
regime, when the correlation length has exceeded 𝐿 and 𝛽
is the growth exponent, describing the intermediate time
behavior. The dynamical exponent 𝑧 can be expressed
as the ratio of the growth exponents

𝑧 = 𝛼/𝛽 (5)

and due to the Galilean invariance the 𝛼+ 𝑧 = 2 relation
holds as well.

While in 𝐷 = 1 + 1 exact solutions are known, due to
the Galilean symmetry [4] and an incidental fluctuation-
dissipation symmetry [12], in higher dimensions KPZ has
been investigated by various analytical [13–18] and nu-
merical methods [19–22], still debated issues remain. For
example, there is a controversy on the surface growth
exponents of the 𝐷 = 2 + 1 KPZ, obtained by re-
cent simulations [2, 23, 24] and a field theoretical study
[25]. Assuming that the height correlations do not ex-
hibit multi-scaling and satisfy an operator product ex-
pansion Ref. [25] concluded that growth exponents are
rational numbers in two and three dimensions [25]. This
was in accordance with some earlier Restricted Solid-
on-Solid (RSOS) model simulation results [26, 27]. Re-
cent high precision simulations [23, 24, 28–30] all ex-
cluded this and concluded 𝛼 = 0.393(4) [23, 24, 30] and
𝛽 = 0.2414(15) [23]. RSOS models are defined by deposi-
tion at random sites if the local height difference satisfies

|ℎ(x, 𝑡)− ℎ(x′, 𝑡)| ≤ 𝑁 . (6)

Very recently Kim [31] investigated RSOS models with
maximum step sizes 𝑁 = 1, 2, ...7. As he increased 𝑁 the
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roughness exponent 𝛼 seemed to converge to 4/10 and
the growth exponent 𝛽 to 1/4 in agreement with [25–27].
This issue is important, because one may speculate that
discretized simulations cannot describe the local singu-
larities of continuum models, i.e. finite slopes may cause
corrections, responsible for the longstanding debate be-
tween field theory and discrete model simulations.

In this paper we show that the converse is true. By
performing very careful corrections-to-scaling analysis on
the model of Ref. [31] we show that even in case of 𝑁 > 1
the rational numbers of [25–27] can be excluded in the
𝐿 → ∞ limit. Local slopes analysis shows, that the
𝑁 = 1 case has the smallest corrections and describes
the KPZ universality scaling the best. For 𝑁 > 1 correc-
tions corresponding shorter wavelengths are introduced.
Our findings are in full agreement with the scaling results
obtained for ballistic growth models [24, 32, 33].

II. MODELS AND SIMULATION ALGORITHMS

In order to enable long time surface growth simula-
tions of large systems, a multisurface-like parallel imple-
mentation of the RSOS model has been implemented for
graphics processing units (GPUs). Two parallelization
approaches have been combined as follows:

Since GPUs feature a number of vector processors,
multiples of 128 realizations of the model were simulated
simultaneously. This creates a data-parallel workload,
which can straightforwardly be vectorized. Each single
instruction multiple thread (SIMT) unit of the GPU up-
dates 128 realizations, in which the sequence of randomly
selected coordinates for update is the same. This corre-
lation was broken by updating only half of the selected
lattice sites in each attempt. If more realizations were
simulated, different sets of 128 realizations evolved com-
pletely independently.

In order to handle large systems effectively a domain
decomposition (DD) was also used to distribute the work
of realizations among multiple SIMT elements. A double-
tiling scheme was applied by splitting up the simula-
tion cells into tiles, spitted further into two sub-tiles
along each spatial direction [34]. In the present two-
dimensional problem this yields 2𝑑 = 4 sets of sub-tiles,
each of which can be updated by multiple independent
workers. After each lattice sweep the origin of the DD
was moved randomly to eliminate correlations. Imple-
mentation details will be published elsewhere [35].

Roughening of 2 + 1-dimensional RSOS surfaces was
studied for restriction parameters 𝑁 = 1, 3, 5, 7, by start-
ing from flat initial conditions. To obtain estimates for
the exponent 𝛽, the growth of surfaces was followed up
to 𝑡 = 105 Monte-Carlo steps (MCS), which is well be-
fore the correlation length approaches the system sizes:
𝐿 = 4096, 8192 and 9605 studied here (throughout this
paper the time is measured in MCS). The largest system
size was bounded by memory constraints, filling up 12GB
of the NVIDIA K40 GPU, and leaving some memory for

the random number generator (RNG) states. The results
were averaged over 𝑛 = 768, 128 and 128 realizations, re-
spectively, where the latter two correspond to only one
multisurface run.

The exponent 𝛼 was determined by a finite-size scal-
ing analysis of the saturation roughness of system sizes
between 𝐿 = 64 and 𝐿 = 512. To keep the noise am-
plitude constant we used domain sizes of 8 × 8 lattice
sites. We determined the interface width by averaging
over 𝑊 (𝐿, 𝑡) for times 𝑡 ≥ 𝑡start and for all samples. We
checked whether the averaged values belong to the steady
state: 𝑡 > 𝑡steady* by varying 𝑡start, the onset times of the
measurements. We estimated 𝑡steady* via the relation

𝑎𝑁 · 𝐿𝛼 = 𝑏𝑁 · 𝑡𝛽steady* , (7)

using the parameters 𝑎𝑁 and 𝑏𝑁 , deduced from fitting in
small systems.

In order to estimate the asymptotic values of 𝛼 and 𝛽
for 𝐿 → ∞ and 𝑡 → ∞, respectively, a local slope analysis
of the scaling laws were performed [36]. We calculated
the effective exponents

𝛼eff

(︂
𝐿− 𝐿/2

2

)︂
=

ln𝑊 (𝐿, 𝑡 → ∞)− ln𝑊 (𝐿/2, 𝑡 → ∞)

ln(𝐿)− ln(𝐿/2)

(8)

𝛽eff

(︂
𝑡𝑖 − 𝑡𝑖/2

2

)︂
=

ln𝑊 (𝐿 → ∞, 𝑡𝑖)− ln𝑊 (𝐿 → ∞, 𝑡𝑖/2)

ln(𝑡𝑖)− ln(𝑡𝑖/2)
.

(9)

In our studies the simulation time between two measure-
ments is increased exponentially

𝑡𝑖+1 = (𝑡𝑖 + 10)e𝑚 , (10)

using 𝑚 = 0.01 and 𝑡0 = 0, while statistical uncertainties
are provided as 1𝜎–standard errors, defined as Δ1𝜎𝑥 =√︀
⟨𝑥2⟩ − ⟨𝑥⟩2/(𝑁 − 1).

III. SURFACE GROWTH RESULTS

A. The Growth Regime

The growth of the surface roughness follows apparently
the same, clear, power-law for all considered 𝑁 (Fig. 1,
top). The local slope plots (Fig. 1, down), using (9), show
an effective growth exponent 𝛽eff ≈ 0.25 for 𝑁 = 5, 7
for 𝑡 ≤ 1000MCS (𝑡−1/4 ≈ 0.18), in agreement with
Kim’s results [31]. Later, the effective growth exponent
decreases for all 𝑁 > 1, followed over two orders of mag-
nitude in time 1.

Expecting independence of 𝛽 from 𝑁 , it follows that
the asymptotic estimates 𝛽𝑁 should be the same. By as-
suming power-law corrections to the asymptotic scaling
𝑊 (𝐿 → ∞, 𝑡) ∝ 𝑡𝛽(1+ 𝑡−𝑥), we obtained a minimal vari-
ance of the 𝛽𝑁>1 estimates in case of 𝑥 ≃ 0.25. Therefore,
we plotted our 𝛽eff results on the ∼ 1/ 4

√
𝑡 scales, which
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makes the tails of the curves straight in the 𝑁 → ∞ limit.
Logarithmic corrections to scaling were also tested, but
they did not improve the extrapolations.

Table I lists the obtained estimates for 𝛽 for the consid-
ered system sizes. Results for different 𝑁 > 1 are prac-
tically identical and are thus averaged to give a common
value. The case 𝑁 = 1 is listed separately, due to the dif-
ferent corrections to scaling. For 𝑁 = 1, 𝛽eff can be best
extrapolated by a power-law fit with 𝑥 = 0.90(2). This
is in a good agreement with the results of [37], where
𝑥 ≃ 0.96 ≃ 4𝛽 is reported, based on the KPZ ansatz
hypothesis. This motivated us testing more general scal-
ing forms, with correction exponents multiple of 𝑥 = 𝛽.
When we combined the effective exponent forms of 𝑁 = 1
and 𝑁 > 1

𝛽eff(1/𝑡) = 𝛽 + 𝑎1/𝑡
4𝛽 + 𝑎2/𝑡

𝛽 , (11)

with free parameters 𝑎𝑖, fitting for 𝑡 ≥ 148MCS resulted
in good agreement for most of the growth region. This
is shown for 𝐿 = 8192 by the dashed lines in Fig. 1,
bottom panel. From these extrapolations we obtained
the estimates: 𝛽𝑁>1 = 0.2395(5) and 𝛽1 = 0.2415(5).

As we can observe in Fig. 1, the effective exponents
suffer from stronger corrections for 𝑁 > 1, than in the
𝑁 = 1 case. Furthermore, our data suggest a possible
oscillating convergence of 𝛽eff for 𝑁 > 1, as reported in
simulations of the ballistic deposition model (BD) [24].
Extrapolations based on the form (11), while in good
agreement within the observed region, are prone to over-
fitting, where they can not cover all possible corrections.
The values for 𝛽𝑁>1 are thus underestimated, if the ef-
fective exponents do indeed show oscillating convergence.

The estimates show no clear dependence on system
size, thus it can be safely assumed that all simulations
are well within the scaling regime and do not suffer from
finite-size effects. All results are within the margin of
error of the octahedron model 𝛽 = 0.2415(15) [23]. Most
notably this is also the case for the estimates for 𝑁 > 1.
Overall, the presented data support 𝛽 = 0.241(1).

Since the curves in Fig. 1 correspond to the same 𝐿
and sample size 𝑛, one can observe that the signal-to-
noise ratio (S/N), the ratio between the interface width
and the sample variance, increases with 𝑁 . For 𝑁 = 7
this is higher by a factor of ∼ 3.6, while for 𝑁 = 3 the
S/N is about ∼ 2.5 bigger than that of the 𝑁 = 1 result.
Presumably, the decrease of relative noise level is the con-
sequence of a kind of self-averaging, since systems with
larger allowed 𝑁 accommodate more surface information
than smaller ones. It is tempting to exploit this property
by choosing larger height differences in the simulations,
even if this can be implemented less efficiently.

B. The Steady State

Direct fitting of the finite size scaling form

𝑊sat(𝐿) ∼ 𝐿𝛼, (12)
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𝛽5 = 0.2400(1)

𝛽3 = 0.2406(1)

𝛽1 = 0.2423(2)

FIG. 1: Top: Squared roughness (𝑊 2) of surfaces of size
𝑉 = 40962 (256 realizations) in the scaling regime (error-
bars are smaller than symbols). Bottom: Local slope analysis
of roughness scaling for size 𝑉 = 81922 (128 realizations).
Straight lines are linear fits to the tail (𝑡 ≥ 1260MCS), ex-
trapolating to 𝑡 → ∞, assuming 4

√
𝑡 corrections. Uncertainties

given for 𝛽𝑁 are pure fit errors. The black dashed line is the
power-law extrapolation for 𝑁 = 1. The dashed lines corre-
sponding in color to the respective plots for 𝑁 > 1 are fits of
the form (11). All PL fits were performed for 𝑡 ≥ 148MCS.
Both figures show 𝑁 = 1, 3, 5, 7 (bottom to top).

TABLE I: Extrapolated 𝛽 results for different 𝑁 . Figures in
the parentheses for 𝑁 = 1 are fit, while for 𝑁 > 1 case are 1𝜎
error estimates.

𝐿 4096 8192 9605
𝛽1 0.2412(1) 0.2418(1) 0.2415(1)
𝛽𝑁>1 0.2404(3) 0.2405(3) 0.2410(3)

for 32 ≤ 𝐿 ≤ 512 and 𝑡start = 50𝑡steady* yields the follow-
ing estimates

𝛼fit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.392(1) 0.392(5) N=1
0.401(2) 0.400(4) N=3
0.402(2) 0.401(4) N=5
0.402(2) N=7

For comparison, Kim’s results [31] are shown in the sec-
ond column. When we decrease 𝑡start our values de-
crease slightly, but fall inside the error margins if 𝑡start ≥
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2𝑡steady* . So, direct fits match perfectly those of [31],
obtained by sequential Monte Carlo updates.

However, if the 𝐿 = 32 data are excluded, our esti-
mates become significantly lower, warning for strong cor-
rections to scaling. This can also be seen with the help of
the effective exponents in Fig. 2 calculated by (8). There
is a clear tendency for 𝛼eff to decrease as we increase the
system size for the 𝑁 > 1 cases. The approach to 𝐿 → ∞
is nonlinear, but the number of points is insufficient for
PL extrapolations to produce consistent estimates. We
plotted the 𝛼eff(𝐿) results on the 1/

√
𝐿 scale, resulting

in points that can be settled on straight lines. Linear
extrapolation to asymptotically large sizes yields:

𝛼 =

{︃
0.391(1) 𝑁 = 1

0.386(1) 𝑁 > 1

Corrections to finite-size scaling (12) in case of 𝑁 = 1 are
small, explaining the good agreement between local slope
analysis and the direct fit. The slight difference between
the 𝑁 = 1 and 𝑁 > 1 results may be attributed to the
fact that our data points are not deeply enough from the
steady state. This might also explain the disagreement
with the results of a recent study [30], which reported
𝛼 = 0.3869(4) for 𝑁 = 1. There is a further uncertainty
of the extrapolation to 𝐿 → ∞, which is not accounted
for by the fit errors. With the assumption of an intrinsic
width: 𝑊 2

𝑖 = 0.2 [32], the local slopes analysis shows
stronger corrections to scaling, therefore we did not apply
this in our study.

The observation of stronger corrections for larger 𝑁 -s
is consistent with a recent analysis of the BD. [24] This
study found that corrections to scaling, for both 𝛼 and 𝛽,
are reduced, when the BD surface is smoothened by bin-
ning of the surface positions before analysis, thereby de-
creasing the height differences between neighboring sites.
Binning of the surface did not change the universal be-
havior, it only decreased non-universal corrections. The
corrections produced even an oscillatory approach to the
asymptotic values of the exponents. This can explain
why our simple extrapolations of 𝛼eff (Fig. 2) and 𝛽eff

(Fig. 1) for 𝑁 > 1 undershoot those of 𝑁 = 1.
All of our estimates up to 𝑁 ≤ 7, obtained by the lo-

cal slope analysis, are in the range 𝛼 = 0.390(4), which
clearly excludes 𝛼 = 2/5. Plugging our 𝛼 and 𝛽 results
into the scaling relation (5) we get the dynamical ex-
ponent estimates 𝑧𝑁=1 = 1.61(2) and 𝑧𝑁>1 = 1.60(2),
respectively. The scaling law following from the Galilean
invariance is satisfied with these exponents both for
𝑁 = 1: 𝛼 + 𝑧 = 2.01(2) and 𝑁 > 1: 𝛼 + 𝑧 = 1.99(2)
within error margins.

We have also tested the scaling form (3) numerically
by using our 𝛼 and 𝛽 values. As Fig. 3 shows good data
collapses can be obtained for 𝑁 > 1 and even a perfectly
looking one for 𝑁 = 1. For 𝑁 > 1 in the growth regime
a perfect one can also be achieved assuming the values
suggested by Kim and Kosterlitz [26] (Fig. 3, top). This
can be understood by taking into account the corrections

0 5 · 10−2 0.1 0.15

0.390

0.400

0.410

1/
√
𝐿

𝛼
eff

𝛼7 = 0.386(2)

𝛼5 = 0.386(1)

𝛼3 = 0.386(1)

𝛼1 = 0.391(1)

0 10 20 30 40 50

0.384

0.386

0.388

0.390

0.392

𝑡start/𝑡steady*
𝛼

𝛼7 𝛼5

𝛼3 𝛼1

FIG. 2: Top: Local slopes of finite-size scaling analysis with
𝑁 = 1, 3, 5, 7. Error bars are propagated 1𝜎 errors. Straight
lines are linear fits to extrapolate to infinity, uncertainties
given for 𝛼𝑁 are pure fit errors. Steady-state data taken for
𝑡 > 𝑡start = 50𝑡steady* (see text). Bottom: Dependence of
extrapolated 𝛼 on 𝑡start is weak. Both figures: Sample sizes
are at least 1024-2048 realizations and ≥ 8192 realizations for
𝐿 ≤ 64. All system sizes taken into account for finite-size
scaling are listed in Fig. 3, where the considered timescales
can also be read off.

to scaling we explored above. Effective exponents for
early times and small systems agree with the conjecture
by [26] and indeed the most strongly outlying curves in
Fig. 3, top, correspond to smaller systems.

We also calculated some standard measures, the skew-
ness

𝑆 = ⟨(Δℎ)3⟩/⟨(Δℎ)2⟩3/2 (13)

and the kurtosis

𝑄 = ⟨(Δℎ)4⟩/⟨(Δℎ)2⟩2 − 3 (14)

of our width-distributions in the steady state. The ob-
tained values show no significant dependence on 𝑁 , our
best results are 𝑆 = 1.70(1) and 𝑄 = 5.38(4), in good
agreement with those of [22].
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FIG. 3: Collapse of squared roughness in the steady state for
𝑁 = 1, 3, 5, 7 (from bottom to top). The top figure shows
a perfect collapse for 𝑁 > 1, using 𝛼 = 0.4 and 𝛽 = 0.25
(𝑧 = 𝛼/𝛽 = 1.6). The bottom figure shows a collapse using
𝛼 = 0.389 and 𝛽 = 0.241 (𝑧 ≈ 1.61). This looks perfect for
𝑁 = 1, but not for 𝑁 > 1.

C. Consistency of Fine-Size Scaling with Respect
to DD

Since we used a parallel DD in our simulations we have
also checked for dependence of the results on the applied
scheme. We performed additional finite-size scaling stud-
ies with domains of 16 × 16 and 6(+1) × 10(+1) lattice
sites. The figures in the parentheses refer to irregular
tiling of the system. This is the consequence of the fact,
that lattices cannot be divided into domains with a lat-
eral size of six (or ten) sites without remainder, thus a
subset of domains have larger lateral size to compensate
it. This configuration results from dividing the system
into multiples of 5 × 3 tiles, in order to achieve optimal
load balancing on NVIDIA GTX Titan Black GPUs. In
both cases the smallest considered system size was 𝐿 = 64
to avoid unreasonable DD. Another test was done using
3(+1) × 5(+1) sized domains. These tiles turned out to
be too small to give correct results, expressed by fail-
ing data collapses, thus we do not consider them in the
following discussion.

0 5 · 10−2 0.1 0.15

0.390

0.400

0.410

1/
√
𝐿

𝛼
eff

domains 6(+1)× 10(+1)

𝛼7 = 0.387(2)

𝛼5 = 0.388(2)

𝛼3 = 0.387(2)

𝛼1 = 0.390(2)

0 5 · 10−2 0.1 0.15

0.390

0.400

0.410

1/
√
𝐿

𝛼
eff

domains 16× 16

𝛼7 = 0.386(4)

𝛼5 = 0.388(2)

𝛼3 = 0.387(4)

𝛼1 = 0.386(2)

FIG. 4: Local slopes of finite-size scaling analysis for 𝑁 =
1, 3, 5, 7. Error bars are propagated 1𝜎 errors. Straight lines
are linear fits to extrapolate to infinity, uncertainties given
for 𝛼𝑁 are pure fit errors. Steady-state data is taken for
𝑡 > 𝑡start = 50𝑡steady* (see text). Top: DD domains con-
taining 6(+1) × 10(+1) sites. Sample sizes are at least 512
realizations, for 𝑁 = 5, 7 and sizes 𝐿 = 64 and 128, 𝑛 = 16384
𝑛 = 8192 are used. Bottom: DD domains containing 16× 16
sites. For 𝐿 = 512 the sample contains 256 realizations, for
other system sizes at least 512 samples are included.

The differences among the results of the considered
DD configurations were not significant in the data col-
lapses, nor in the finite-size scaling fits. The most sen-
sitive quantity proved to be the effective roughness ex-
ponent, shown in Fig. 4. Sample sizes of this test were
smaller than those of Sect. III B, making the extrapola-
tions less reliable. Still, all estimates derived from this
data are consistent with the estimate 𝛼 = 0.390(4). Even
the results of irregular, non-square DDs do not deviate
significantly, although small systematic errors might be
present.
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IV. CONCLUSIONS

Extensive numerical simulations have been performed
for 2 + 1 dimensional RSOS models with variable height
difference restrictions. Careful correction to scaling anal-
ysis has provided numerical evidence, that the universal
surface growth exponents agree with the most precise val-
ues known for the 2+1 dimensional KPZ class. These es-
timates: 𝛼 = 0.390(4) and 𝛽 = 0.2415(3) exclude the ra-
tional values 𝛼 = 4/10 and 𝛽 = 1/4, conjectured by [25–
27, 31]. Our results support the generalized KPZ ansatz,
which takes finite time corrections into account and pre-
dicts exponents 𝑥 that are multiples of 𝛽 [37]. We found
𝑥 = 0.90(2) for 𝑁 = 1 and 𝑥 ≃ 0.25 for 𝑁 > 1.

We have shown that by increasing the local height dif-
ferences we obtain better S/N in the simulations, but
stronger corrections to scaling, which can confuse numeri-
cal analysis based on simple power-law fitting. Therefore,
smaller step sized models, like the octahedron model [23]
describe better the asymptotic, long wave scaling behav-
ior of the KPZ universality class. Our conclusions for
scaling-corrections are in agreement with those, obtained
for ballistic growth models [24, 32]. According to our
knowledge oscillating convergence of effective exponents
has not yet been observed in RSOS models warning fur-
ther investigations. We also provided estimates for the
skewness 𝑆 = 1.70(1) and the kurtosis 𝑄 = 5.38(4) of
the steady state surface width distributions. Our sim-
ulations have been performed using multisurface GPU
SIMT algorithms with origin moving domain decomposi-

tion. The results have been justified by varying the tile
sizes. A sustained performance of ≃ 1.1× 1010 deposi-
tion attempts per second could be achieved running on
a single NIVIDIA GTX Titan Black GPU. This opens
up the possibility for precise RSOS simulations in higher
dimensions.
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