RES³T - Rossendorf Expert System for Surface and Sorption Thermodynamics

Paper Details


Bibliographic Data:


Code: CS02
Paper Type: Article
Author(s): Criscenti LJ, Sverjensky DA
Title: A Single-Site Model for Divalent Transition and Heavy Metal Adsorption over a Range of Metal Concentrations
Journal: Journal of Colloid and Interface Science
Volume: 253   Year: 2002   Pages: 329-352
ISSN-Print: 0021-9797
Internal Storage: V1656
DOI: 10.1006/jcis.2002.8529
Abstract:

Metal adsorption data over a range of surface coverages typically are characterized by curvilinear metal adsorption isotherms. These isotherms generally have a slope of 1 at low surface coverage and a shallower slope at higher surface coverages. The curvature of metal adsorption isotherms with increasing surface coverage is frequently interpreted in terms of sequential adsorption onto different types of surface sites, multinuclear surface complexation, or nonideality of metal adsorption. We demonstrate that the curvature of metal adsorption isotherms can also be attributed to changes in surface charge and potential that depend on the predominant type of metal surface complex. A single-site extended triple-layer model is used to reinterpret previously studied metal adsorption isotherms and pH edges for a wide variety of metals (Cd2+, Co2+, Cu2+, Pb2+, and Zn2+) and solids (goethite, hydrous ferric oxide, corundum, and magnetite) in different electrolyte solutions (NaNO3 and NaClO4). Only metal adsorption on ferrihydrite at very low surface coverages is not consistent with the single-site triple-layer model. This discrepancy might be explained if ferrihydrite is in fact not a single phase but a mixture of two or more phases. Metal surface coverages ranging from 10−4 to 10.2 mmol/m2 on the other minerals can be accounted for with a single-site extended triple-layer model if appropriate metal adsorption reactions are chosen. In addition, several examples suggest that, within the context of the model, surface complexation schemes can be established that describe metal adsorption over both a wide range of surface coverage and a wide range of ionic strength.

Comment: RAW_TABLE

Surface Area   |   Site Density / Protolysis   |   Complex Formation   |   Formatted Citation