Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery

Divilov, S.; Eckert, H.; Hicks, D.; Oses, C.; Toher, C.; Friedrich, R.; Esters, M.; Mehl, M. J.; Zettel, A. C.; Lederer, Y.; Zurek, E.; Maria, J.-P.; Brenner, D. W.; Campilongo, X.; Filipović, S.; Fahrenholtz, W. G.; Ryan, C. J.; Desalle, C. M.; Crealese, R. J.; Wolfe, D. E.; Calzolari, A.; Curtarolo, S.

The need for improved functionalities in extreme environments is fuelling interest
in high-entropy ceramics. Except for the computational discovery of high-entropy
carbides, performed with the entropy-forming-ability descriptor, most innovation
has been slowly driven by experimental means. Hence, advancement in the field
needs more theoretical contributions. Here we introduce disordered enthalpy–
entropy descriptor (DEED), a descriptor that captures the balance between
entropy gains and enthalpy costs, allowing the correct classification of functional
synthesizability of multicomponent ceramics, regardless of chemistry and structure.
To make our calculations possible, we have developed a convolutional algorithm that
drastically reduces computational resources. Moreover, DEED guides the experimental
discovery of new single-phase high-entropy carbonitrides and borides. This work,
integrated into the AFLOW computational ecosystem, provides an array of potential
new candidates, ripe for experimental discoveries.

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-38344