Infrared studies of impurity states and ultrafast carrier dynamics in semiconductor quantum structures


Infrared studies of impurity states and ultrafast carrier dynamics in semiconductor quantum structures

Stehr, D.

This thesis deals with infrared studies of impurity states, ultrafast carrier dynamics as well as coherent intersubband polarizations in semiconductor quantum structures such as quantum wells and superlattices, based on the GaAs/AlGaAs material system. In the first part it is shown that the 2pz confined impurity state of a semiconductor quantum well develops into an excited impurity band in the case of a superlattice. This is studied by following theoretically the transition from a single to a multiple quantum well or superlattice by exactly diagonalizing the three-dimensional Hamiltonian for a quantum well system with random impurities. Intersubband absorption experiments, which can be nearly perfectly reproduced by the theory, corroborate this interpretation, showing that at low temperatures in the low doping density regime all optical transitions originate from impurity transitions. These results also require reinterpretation of previous experimental data.
The relaxation dynamics of interminiband transitions in doped GaAs/AlGaAs superlattices in the mid-IR are studied. This involves single-color pump-probe measurements to explore the dynamics at different wavelengths, which is performed with the Rossendorf freeelectron laser (FEL), providing picosecond pulses in a range from 3-200 μm and are used for the first time within this thesis. In these experiments, a fast bleaching of the interminiband transition is observed followed by thermalization and subsequent relaxation, whose time constants are determined to be 1-2 picoseconds. This is followed by an additional component due to carrier cooling in the lower miniband. In the second part, two-color pump-probe measurements are performed, involving the FEL as the pump source and a table-top broad-band tunable THz source for probing the transmission changes. These measurements allow a separate specification of the cooling times after a strong excitation, exhibiting time constants from 230 ps to 3 ps for different excitation densities and miniband widths. In addition, the dynamics of excited electrons within the minibands is explored and their contribution quantitatively extracted from the measurements.
Intersubband absorption experiments of photoexcited carriers in single quantum well structures, measured directly in the time-domain, i.e. probing coherently the polarization between the first and the second subband, are presented. From the data we can directly extract the density and temperature dependence of the intersubband dephasing time between the two lowest subbands, ranging from 50 up to 400 fs. This all optical approach gives us the ability to tune the carrier concentration over an extremely wide range which is not accessible in a doped quantum well sample. By varying the carrier density, many-body effects such as the depolarization and their influence on the spectral position as well as on the lineshape on the intersubband dephasing are studied. Also the difference of excitonic and free-carrier type excitation is discussed, and indication of an excitonic intersubband transition is found.

Keywords: ultrafast spectroscopy; infared spectroscopy; impurity transitions; semiconductor heterostructures; quantum well; superlattice

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; FZD-477 2007
    ISSN: 1437-322X

Downloads

Permalink: https://www.hzdr.de/publications/Publ-10388