Defect study in ZnO related structures - a multi-spectroscopic approach


Defect study in ZnO related structures - a multi-spectroscopic approach

Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Tam, K. H.; Djurisic, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.

ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using amulti-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H2O2 pre-treatment induced ohmic to rectifying contact conversion on Au/n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  • Invited lecture (Conferences)
    11th International Workshop on Slow Positron Beam Techniques for Solids and Surfaces (SLOPOS-11), 09.-13.07.2007, Orleans, France
  • Applied Surface Science 255(2008), 58-62

Permalink: https://www.hzdr.de/publications/Publ-10399