On magnetohydrodynamic drag reduction and flow control behind a body


On magnetohydrodynamic drag reduction and flow control behind a body

Gerbeth, G.; Shatrov, V.

In the first part we present results of direct numerical simulations on turbulent channel flow drag reduction using electromagnetic forces. The Lorentz force is created by the interaction of a permanent magnetic field and an electric current from electrodes placed on the bottom wall surface. We consider the two cases of a spanwise oscillating force and a streamwise steady force. In the second part the flow behind an electromagnetically self-moved sphere is considered for which a drag reduction is found. Results on the linear and nonlinear flow stability will be provided.

Keywords: magnetohydrodynamic drag reduction; efficiency

  • Lecture (Conference)
    6th International Congress on Andustrial and Applied Mathematics (ICIAM 07), 16.-20.07.2007, Zurich, Switzerland

Permalink: https://www.hzdr.de/publications/Publ-10617