Experimental observation of swirl accumulation in a magnetically driven flow


Experimental observation of swirl accumulation in a magnetically driven flow

Grants, I.; Zhang, C.; Eckert, S.; Gerbeth, G.

Independent poloidal and azimuthal body forces are induced in a liquid metal cylinder by traveling and rotating magnetic fields of different frequencies, respectively. The bulk axial and azimuthal velocities are measured by the ultrasound Doppler method. Particle image velocimetry is used to observe the upper free surface velocity distribution. The transition from the poloidal to the azimuthal body force governed regime occurs at a fixed ratio of the respective force magnitude of around 100. This transition is marked by a formation of a concentrated vortex revealing several similarities to intense atmospheric vortices. The vortex structure is controlled by a relatively weak azimuthal force while the poloidal one holds the main control over the top speed of the top speed of the swirl is mainly governed by the poloidal one. Under a certain force ratio the average axial velocity changes its direction in the vortex core resembling the subsidence in an eye of a tropical cyclone or a large tornado. Multiple moving vortices encircle the vortex core in this regime.

  • Journal of Fluid Mechanics 616(2008), 135-152

Permalink: https://www.hzdr.de/publications/Publ-11635