Structural identification of thioarsenates and their differentiation from thioarsenites by EXAFS


Structural identification of thioarsenates and their differentiation from thioarsenites by EXAFS

Suess, E.; Scheinost, A. C.; Bostick, B. C.; Merkel, B. J.; Wallschlaeger, D.; Planer-Friedrich, B.

Thioarsenic complexes play an important role in regulating arsenic solubility, mobility, and toxicity in sulfidic systems. Despite their importance, there is little consensus on their thermodynamic properties and structural identification. A major focus of current research is the unambiguous identification of the members of the two homologue series of monomeric thioarsenic species that are conceptually postulated to exist under sulfidic conditions, (oxy)thioarsenites and (oxy)thioarsenates. Here we report the unambiguous identification of synthetic mono-, di, and tetrathioarsenate using a combination of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). As-O and As-S coordination numbers confirmed the structure as the expected mono-, di- and tetrathioarsenate compounds. The As-O bond distances of 1.69 to 1.70 $\AA$ are comparable with those stated for arsenates, and are easily distinguishable from those for arsenites at 1.78 $\AA$. The As-S distances in our standard materials with 2.17 $\AA$ are clearly shorter than those published for arsenite-sulfide minerals with 2.24 to 2.34 $\AA$. As expected, no As-O bonding was determined in tetrahedral tetrathioarsenate, which is fully coordinated to S. As the extent of thiol complexation increases, the position of the absorption-edge shifts systematically and linearly towards lower energies compared to that of arsenate. The structural data for the individual solid and liquid samples, measured at room temperature or at 15 K, did not show obvious differences, suggesting that the aqueous complexes have similar structures as the XRD-identified solids and are stable in natural waters. An interesting observation was made during the titration of the liquid tetrathioarsenate from pH 6 to 3. Below neutral pH, the absorption edge shifted to lower energies by $\sim$2 eV concomitant with an increase of the As-S bond length to 2.28 $\AA$ at pH 3, comparable with those of orpiment and indicative of either thioarsenites (which have been reported to exist in arsenite-sulfide-containing solutions) or colloidal orpiment. As for thioarsenates, the observed complexes also show a linear trend together with arsenite and orpiment, clearly distinguishable from the arsenate-based line. The present data demonstrate that it is possible to differentiate thioarsenates from thioarsenites by XAS. Combined with other recent studies, these data indicate that thioarsenates can be formed in sulfidic solutions under a broad range of conditions.

Keywords: arsenic; arsenite; arsenate; EXAFS

  • Poster
    2008 AGU Fall Meeting, 15.-19.12.2008, San Francisco, USA

Permalink: https://www.hzdr.de/publications/Publ-11692