Numerical modeling of the growth of small-diameter intermetallic compound crystals by a two-phase RF floating zone method


Numerical modeling of the growth of small-diameter intermetallic compound crystals by a two-phase RF floating zone method

Krauze, A.; Priede, J.; Hermann, R.; Gerbeth, G.

We model numerically the growth of small–diameter single crystals of intermetallic compounds by the floating zone technique using two-phase radio-frequency (RF) electromagnetic heating. An axisymmetric quasi-stationary numerical model is implemented as several coupled computer programs for modeling electromagnetic fields, heat source and force density distributions, heat transfer, and turbulent melt flow. The results of model calculations are presented for the growth of Ni crystals of 2 mm in diameter. It is found that the stable molten zone exists in a very narrow range of inductor currents.

Keywords: crystal growth; electromagnetic heating; floating zone technique

  • Contribution to proceedings
    7th International PAMIR Conference on Fundamental and Applied MHD, 08.-12.09.2008, Presqu´île de Giens, France
    Fundamental and Applied MHD, Reims: Universite de Reims Champagne-Ardenne, 851-855
  • Poster
    7th International PAMIR Conference on Fundamental and Applied MHD, 08.-12.09.2008, Presqu´île de Giens, France

Permalink: https://www.hzdr.de/publications/Publ-11709