Ultra fast electron beam x-ray CT scanner for industrial process tomography


Ultra fast electron beam x-ray CT scanner for industrial process tomography

Fischer, F.; Hampel, U.; Mattausch, G.

In many industrial fields, there is a strong interest in the understanding of inner structure and transient behaviour of multi-phase flows. This is relevant for process control and optimisation in chemical industry or has influence on design of safety components in nuclear engineering, for example. The qualification of computational fluid dynamics codes dedicated to simulation of the stationary and transient flows in complex three dimensional geometries requires in-depth knowledge of the details of the real flow structure under various conditions. To extend our measurement capabilities beyond the wire mesh sensor and needle probes used so far [1], we have developed a high-speed x-ray tomography system recently [2]. This new technique offers the opportunity to perform non-intrusive flow measurements with a high frame rate and also at high temperatures and pressures. The basic principle of the system is similar to the EB CT being used in cardiac diagnostics [3]. The scanner consists of an electron beam gun with triode-type cathode system delivering up to 65 mA beam current at 150 kV acceleration voltage. Using fast electron-optical units, the electron beam is focussed onto a semicircular metal target and swept at a frequency of up to 10 kHz along the target thus producing a rapidly moving x-ray spot. A circular x-ray detector comprising 240 CZT pixels measures the x-ray power transmitted through the object which is placed in the center of the scanner head. The detector readings are recorded at a data acquisition rate of 1 MS/s and subsequently used for image reconstruction. Frame rates of up to 7.000 2D slices per second can be achieved in this way. Typical object diameters are up to 120 mm. Spatial resolution is currently in the range of 1 mm feature size but will be improved in the future.

  • Lecture (Conference)
    1st ITG International Vacuum Electronics Workshop, 10.-11.11.2008, Bad Honnef, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-11793