Conduction at domain walls in oxide multiferroics


Conduction at domain walls in oxide multiferroics

Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalán, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.

We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.

Keywords: multiferroics; domain walls; boundary conductivity; bismuth ferrate

Permalink: https://www.hzdr.de/publications/Publ-11927