ZnO-based magnetic tunnel junctions


ZnO-based magnetic tunnel junctions

Zhou, S.; Xu, Q.; Hartmann, L.; Mücklich, A.; Helm, M.; Biehne, G.; Hochmuth, H.; Lorenz, M.; Grundmann, M.; Schmidt, H.

Spin-polarized tunnel magnetoresistance (TMR) effects occur when two ferromagnets are separated by a thin insulator. The resistance of the tunneling current changes with the relative magnetization orientation of the magnetic bottom and top electrode. The research in this field is fuelled by the demanding of magnetoresistive random access memory (MRAM) devices. Novel MRAM cells are based on magnetic tunnel junctions with current-induced switching. It has been shown that semiconductors need a current pulse for switching which is two orders of magnitude smaller in comparison to metals. Using wide-gap magnetic semiconductors, e.g. ZnO, the magnetic tunnel structure may be transparent and may possess a Curie temperature above room temperature. In this talk, we report the clearly observed tunneling magnetoresistance at 5 K in magnetic tunnel junctions with Co-doped ZnO as the bottom electrode and Co as the top electrode prepared by pulsed laser deposition and thermal evaporation [1], respectively. Spin-polarized electrons were injected from Co-doped ZnO to the crystallized Al2O3 separation layer and tunnelled through the amorphous part of the Al2O3 barrier. Our studies demonstrate the spin polarization in Co-doped ZnO and its possible application in future ZnO-based spintronics devices.
[1] Q. Xu et al., Phys. Rev. Lett. 101, 076601 (2008)

  • Lecture (Conference)
    DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2009, 22.-27.03.2009, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-11979