Resonant two-photon transitions, quadratic detection, and photocurrent autocorrelation using multiple quantum wells


Resonant two-photon transitions, quadratic detection, and photocurrent autocorrelation using multiple quantum wells

Schneider, H.; Liu, H. C.; Winnerl, S.; Drachenko, O.; Helm, M.; Walther, M.; Faist, J.

We report on two-photon detection based on quantum well intersubband nonlinear absorption. Three equidistant subbands, two of which are bound in the quantum well, and the third one in the continuum, result in a resonantly enhanced optical nonlinearity, which is by six orders of magnitude stronger than in usual semiconductors [1]. This device is very promising for quadratic autocorrelation measurements of pulsed mid-infrared sources, including modelocked quantum cascade lasers, radiation obtained by nonlinear optical frequency conversion, and free-electron lasers (FEL). Using these detectors as a quadratic autocorrelator for mid-infrared pulses, temporal resolution is only limited by the sub-ps intrinsic time constants of the intersubband transitions, namely the intersubband relaxation time and the phase relaxation time. We have investigated the performance of devices operating at various wavelengths from the mid-infrared to the Terahertz regimes using ps optical pulses from the FEL at the Forschungszentrum Dresden Rossendorf. In particular, device operation at shorter wavelengths around 5.5 µm is still possible at room temperature, which is crucial for applications in practical systems.
[1] H. Schneider, T. Maier, H. C. Liu, M. Walther, and P. Koidl, Optics Lett. 30, 287 (2005).

Keywords: intersubband transition; two-photon absorption; quantum well infrared photodetector; autocorrelation; free-electron laser

  • Invited lecture (Conferences)
    SPIE Photonics West, 24.-29.01.2009, San Jose, CA, USA

Permalink: https://www.hzdr.de/publications/Publ-12135