A rotating cell for in situ Raman spectroelectrochemical studies of photosensitive redox systems


A rotating cell for in situ Raman spectroelectrochemical studies of photosensitive redox systems

Kavan, L.; Janda, P.; Krause, M.; Ziegs, F.; Dunsch, L.

A recently developed rotating spectroelectrochemical cell for in situ Raman spectroscopic studies of photoreactive compounds without marked decomposition of the sample is presented. Photochemically unstable compounds like fullerenes are difficult to be studied under stationary conditions by in situ spectroelectrochemistry using laser excitation as in Raman spectroscopy. Therefore, a rotating spectroelectrochemical was developed to avoid these difficulties. The cell can be used for any type of a planar electrode and of electrode materials in contact with aqueous or non-aqueous solutions as well as ionic liquids under appropriate laser power and accumulation times. The innovative advantage consists in the precession movement of the spectroelectrochemical cell with an eccentric drive. This precession movement allows a fixed electrical connection to be applied for interfacing the electrochemical cell to a potentiostat. Hence, any electrical imperfections and noise, which would be produced by sliding contacts, are removed. Further advantage of the rotating cell is a dramatic decrease of the thermal load of the electrochemical system. The size of the spectroelectrochemical cell is variable and dependent on the thickness of the cuvettes used ranging up to ca. 10 mm. The larger measuring area causes a higher sensitivity in the spectroscopic studies using this cell. The as constructed spectroelectrochemical cell is easy to be handled. The application of the cell is demonstrated for ordered fullerene C60 layers and the spectroelectrochemical behavior of nanostructured fullerenes. Here the charge transfer at highly ordered fullerene C60 films was studied by in situ Raman spectroelectrochemistry under appropriate laser power and accumulation time without marked photodecomposition of the sample.

Keywords: spectroelectrochemistry; Raman spectroelectrochemical cell; in situ measurements; fullerenes; fullerene layers

  • Analytical Chemistry 81(2009), 2017-2021

Permalink: https://www.hzdr.de/publications/Publ-12168