Linear and Non-Linear Thomson-Scattering X-Ray Sources Driven by Conventionally and Laser Plasma Accelerated Electrons


Linear and Non-Linear Thomson-Scattering X-Ray Sources Driven by Conventionally and Laser Plasma Accelerated Electrons

Debus, A.; Bock, S.; Bussmann, M.; Cowan, T. E.; Jochmann, A.; Kluge, T.; Kraft, S. D.; Sauerbrey, R.; Zeil, K.; Schramm, U.

Compact tuneable sources of ultrashort hard x-ray pulses can be realized by Thomson scattering, taking advantage of the comparatively short wavelength of a scattered laser pulse with respect to the period length of conventional undulators. Here, we present a detailed analysis and optimization of the efficiency of linear and non-linear Thomson scattering when the process is driven with relativistic laser pulses and when the conventional accelerator is replaced by a laser-plasma wakefield accelerator.

Keywords: laser driven x-ray sources; Thomson scattering

  • Contribution to proceedings
    SPIE Europe, Optics and Optoelectronics, 21.-22.4.2009, Prag, Czech Republic
    Harnessing Relativistic Plasma Waves as Novel Radiation Sources from THz to X-rays and beyond, Bellingham, WA (USA): Proceedings of SPIE, 9780819476333, 735908-1-735908-12
  • Invited lecture (Conferences)
    SPIE Europe Optics and Optoelectronics, 21.-22.4.2009, Prag, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-12747