Magnetic measurements as a sensitive tool for studying dehydrogenation processes in hydrogen storage materials


Magnetic measurements as a sensitive tool for studying dehydrogenation processes in hydrogen storage materials

Menendez, E.; Garroni, S.; Lopez Ortega, A.; Estrader, M.; Liedke, M. O.; Fassbender, J.; Solsona, P.; Surinach, S.; Baro, M. D.; Nogues, J.

Magnetic characterization is shown to be a highly effective, nondestructive, and commonly available method to accurately assess dehydrogenation temperatures and further clarify the reaction mechanisms during dehydrogenation in systems with superconducting or ferromagnetic constituents. As examples, the dehydrogenation temperature of NaBH4 in a nanostructured NaBH4/MgH2 system and the dehydrogenation process of nanostructured Mg2CoH5, based on the superconducting and ferromagnetic properties of MO, and Co, respectively, are determined.

Keywords: hydrogen storage; superconductivity; ball-milling; nanocrystals; SQUID

  • Journal of Physical Chemistry C 114(2010)39, 16818-16822

Permalink: https://www.hzdr.de/publications/Publ-12891