Comparative investigation of the limiting solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5]•12H2O


Comparative investigation of the limiting solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5]•12H2O

Hennig, C.; Ikeda-Ohno, A.; Emmerling, F.; Kraus, W.; Bernhard, G.

The coordination of the limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species was obtained in a aqueous solution of 0.05 M U(IV) and 1 M NaHCO3. Single crystals of Na6[U(CO3)5]•12H2O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as [U(CO3)5]6 anionic complex. This monomeric complex forms a network with charge compensating Na+ cations and H2O ligands. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) Å, U-C = 2.912(4) Å and U-Odist = 4.164(6) Å. U L3edge EXAFS spectra were collected from the solid Na6[U(CO3)5]•12H2O and the corresponding solution. In both samples, the first shell of the Fourier transforms (FTs) revealed ten oxygen atoms at an average distance of 2.450.02 Å, the second shell originates from five carbon atoms with a U-C distance of 2.910.02 Å, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.170.02 Å. These data indicate the identity of the [U(CO3)5]6 complex in solid and solution state. The high negative charge of the [U(CO3)5]6 anion is compensated by Na+ cations. In solid state the Na+ cations form a bridging network between the [U(CO3)5]6 units, while in liquid state they seem to be located closer at the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbour actinide(IV) ions and indicate the equivalence of the [An(CO3)5]6 coordination within the series of thorium, uranium, neptunium and plutonium.

Keywords: U(IV) carbonate species; EXAFS; XRD

Permalink: https://www.hzdr.de/publications/Publ-12900