DC and high-frequency conductivity of the organic metals β"-(BEDT-TT)2SF5RSO3 (R=CH2CF2 and CHF)


DC and high-frequency conductivity of the organic metals β"-(BEDT-TT)2SF5RSO3 (R=CH2CF2 and CHF)

Glied, M.; Yasin, S.; Kaiser, S.; Drichko, N.; Dressel, M.; Wosnitza, J.; Schlueter, J. A.; Gard, G. L.

The temperature dependences of the electric-transport properties of the two-dimensional organic conductors β"--(BEDT-TTF)2SF5CH2CF2SO3, β"-(d8-BEDT-TTF)2SF5CH2CF2SO3, and β"-(d8-BEDTTTF)2SF5CH2CF2SO3 are measured by dc methods in and perpendicular to the highly conducting plane. Microwave measurements are performed at 24 and 33.5GHz to probe the high-frequency behavior from room temperature down to 2 K. Superconductivity is observed in β"-(BEDT-TTF)2SF5CH2CF2SO3 and its deuterated analogue. Although all the compounds remain metallic down to low-temperatures, they are close to a charge-order transition. This leads to deviations from a simple Drude behavior of the optical conductivity which become obvious already in the microwave range. In β"-(BEDT-TTF)2SF5CH2CF2SO3, for instance, charge fluctuations cause an increase in microwave resistivity for T < 20K which is not detected in dc measurements. β"-(BEDT-TTF)2SF5CHFSO3 exhibits a simple metallic behavior at all frequencies. In the dc transport, however, we observe indications of localization in the perpendicular direction.

Permalink: https://www.hzdr.de/publications/Publ-12941