Liquid metal Taylor-Couette experiment on the magnetoreotational instability


Liquid metal Taylor-Couette experiment on the magnetoreotational instability

Gundrum, T.; Stefani, F.; Gerbeth, G.; Szklarski, J.; Rüdiger, G.; Hollerbach, R.

The magnetorotational instability (MRI) plays an essential role in the formation of stars and black holes. By destabilizing hydrodynamically stable Keplerian flows, the MRI triggers turbulence and enables outward transport of angular momentum in accretion discs. We present the results of a liquid metal Taylor-Couette experiment under the influence of helical magnetic fields that show typical features of MRI at Reynolds numbers of the order 1000 and Hartmann numbers of the order 10. Particular focus is laid on an improved experiment in which split end caps are used to minimize the Ekman pumping.

  • Lecture (Conference)
    6th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, 09.-11.09.2008, Prague, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-13008