Magneto-acoustic Faraday rotation in Tb3Ga5O12


Magneto-acoustic Faraday rotation in Tb3Ga5O12

Sytcheva, A.; Yasin, S.; Wosnitza, J.; Zherlitsyn, S.; Lüthi, B.; Löw, U.; Goto, T.; Wyder, P.

We report on observation of the magneto-acoustic Faraday effect in paramagnetic Tb3Ga5O12 (TGG). This effect is the acoustic analog of the magneto-optical Faraday rotation. In cubic crystals, such as TGG, the two transverse sound waves propagating along the [100] direction are doubly degenerated. The magnetic field applied along the propagation direction breaks the time-reversal invariance and, therefore, lifts the degeneracy and induces a polarization rotation. This can be detected in the sound attenuation as oscillations as function of magnetic field, where each period corresponds to a polarization rotation of pi. Here, we present magneto-acoustic measurements performed at T = 1.4 K in fields up to 20 T in the frequency, f, range from 30 to 330 MHz. Indeed, we observed oscillations in the sound attenuation due to the Faraday effect. Theoretical studies predict an f2 dependence of the Faraday rotation [1], whereas we observe a linear dependence. Such behavior has also been reported for CeAl2 in the paramagnetic phase [2]. We observed a softening of the sound velocity with increasing field with a minimum at about 19 T. At the same field the attenuation oscillations cease. These results can be attributed to a crystal-field level crossing. With the appropriate choice of crystal-field parameters an effective theory predicts this level crossing to occur at ~20 T. Taking the magneto-elastic interaction into account, the theory reproduces the qualitative features of our data.

  • Poster
    RHMF09 (Research In High Magnetic Fields 2009), 22.-25.07.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-13024