High-field ESR and magnetization study of [Cu(pyz)2(HF2)]PF6: an S = 1/2 quasi-two-dimensional Heisenberg magnet


High-field ESR and magnetization study of [Cu(pyz)2(HF2)]PF6: an S = 1/2 quasi-two-dimensional Heisenberg magnet

Cizmar, E.; Ozerov, M.; Skourski, Y.; Beyer, R.; Uhlarz, M.; Zvyagin, S. A.; Schlueter, J. A.; Manson, J. L.; Wosnitza, J.

Electron spin resonance and magnetization studies of the quasi-two-dimensional spin system [Cu(pyz)2(HF2)]PF6 have been performed in static and pulsed magnetic fields up to 50 T. It is argued that the magnetization is governed by the two-dimensional nature of spin correlations due to the large anisotropy of the exchange couplings (J_perp/J = 0.01, where J is the in-plane and J_perp is the interlayer exchange parameters). The magnetization saturates at the critical fields 37.1 T and 34.3 T for magnetic field applied perpendicular and parallel to the direction, respectively. The frequency-field diagram of the magnetic excitations changes dramatically below the Néel temperature (TN = 4.38 K). Our observation reveals an easy-plane type of the magnetic anisotropy. The exchange field (HE = 18.5 T) and out-of-plane anisotropy field (HA = 0.05 T) were calculated using a mean-field-theory approximation.

  • Poster
    RHMF09 (Research in High Magnetic Fields 2009), 22.-25.07.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-13038